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Abstract—Six algorithms for solving the advection equation are compared to determine their suitability for
use in photochemical air quality models. The algorithms tested are the Smolarkiewicz method, the Galerkin
finite element method, the numerical method of lines, the accurate space derivative method (ASD), Bott
method, and Emde method. Four algorithms for filtering the numerical noise produced when solving the
advection equation are also compared. The algorithms are evaluated both on two test problems and in the
CIT model. The Galerkin finite element and the ASD methods are implemented in the CIT in parallel
computation. Results indicate that the ASD method, coupled with the Forester filter, produces the most
accurate results. When the ASD transport solver is implemented in parallel, a speed-up of about 838 is
achieved using 256 processors. Furthermore, a new set of optimized Forester filter parameters for grid-based

air quality models is determined.

Key word index: Air quality models, advection routines, parallel computation.

1. INTRODUCTION

Eulerian air quality models (AQM:s) are based on the
numerical solution of the atmospheric diffusion equa-
tion. Splitting methods provide an accurate and eco-
nomical approach to solve the atmospheric diffusion
equation (McRae et al., 1982). The advection equation,
one of the component operators in the splitting
scheme, accounts for the transport of pollutants under
a given wind field.
The two-dimensional advection equation is

oC () 6(0C)_0
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where C is the concentration, t is time, and u, v are the
x, y components of the wind velocity field. When
solving equation (1) numerically, it is well known that
numerical diffusion and dispersion degrade the com-
puted solution (Oran and Boris, 1987) as both the
amplitude and phase of different Fourier components
of the solution tend to be altered by numerical
schemes. To overcome these errors, a large number of
numerical advection schemes have been developed.
Rood (1987) summarizes the development and im-
provements of many of the methods.

A variety of numerical advection schemes have been
tested and compared to determine their suitability for
use within air quality models (Chock and Dunker,
1983; Chock, 1985, 1991; Schere, 1983; Sheih and
Ludwig, 1985; Tran and Mirabella, 1991). Hov et al.

(1989) show that, in AQMs, errors in the solution of
the transport step are amplified during the chemistry
step due to the highly nonlinear nature of the chemis-
try. Low-order numerical schemes used to solve the
advection equation provide nonoscillatory solutions
with poor accuracy. High-order numerical schemes,
on the other hand, are characterized by computational
noise near regions of steep gradients. The oscillatory
noise increases in amplitude and propagates into
neighboring grid points as the solution time increases,
often producing negative values in the distribution
being advected. Negative concentrations correspond
to physically unrealistic “negative” mass. To over-
come this problem different algorithms that “filter” the
oscillations have been proposed. A filter is a com-
putational technique, used after each advection solver
step, that removes computational noise. A filtered
solution is expected to maintain the accuracy of high-
order numerical schemes, and present a distribution
that is acceptable on physical terms.

This study has the following objectives: (1) to build
on the work of Chock and others to test advection
routines in both idealized tests and in a three-dimen-
sional grid-based air quality model, the CIT model, (2)
to evaluate nonlinear filters that have been proposed
both on a test problem and in the three-dimensional
CIT model, (3) to evaluate advection routines/filters in
a parallel implementation of the CIT model, (4) to
provide recommendations on the advection routines/
filters of choice for three-dimensional air quality mo-
dels, for both sequential and parallel environments.
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2. NUMERICAL ADVECTION ALGORITHMS

Equation (1) is frequently solved in air quality
models using splitting methods (Yanenko, 1971),
where equation (1) is approximated by the successive
solution of

0C d(uC)

s =0 e)
ot ox

dC d(vC) o 3
a + oy =0. (3

The character of equation (1) and equations (2) and (3)
is that material is transported intact, without deple-
tion or diffusion. Numerical methods solving equa-
tions (1)—(3) must preserve this property as closely as
possible.

A traditional way to evaluate the accuracy of nu-
merical methods of solving equations (2) and (3) is to
advect an initial cosine hill distribution described by
the following equations (Pepper and Long, 1978):

_ _ [ 50(1+cos%}) if R<4
C,-‘]-(O)——{ 0 for R>4 “)
R?=(x;—x0)* +(y;—¥o)* (%)

where x,=7, y,=17. The center of the hill is at grid
point (7, 17) with a concentration value of 100. Both x;
and y; vary from 1 to 33. The hill rotates counter-
clockwise about the z-axis at grid point (17, 17) which
is the center of the grid. The angular velocity is set so
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that it takes 7200z time units to complete one revolu-
tion. Time steps of 307 units were used in all the
computations performed here.

Ideally after an integer number of revolutions the
peak of the distribution should be 100 and its center
should be located at (7, 17). To evaluate the accuracy
of different schemes, the following measures have been
traditionally used (Chock and Dunker, 1983; Chock,
1985, 1991; Tran and Mirabella, 1991):

Mass conservation ratio=Y C, ;(t) / >C; ;0 (6)
£ &

L
Mass distribution ratio =Zij(t)/Zij(0) @)
iJj iJj

Maximum absolute error =max (|C; ;(t)—

G0N 8)

where C; ; represents the computed concentration at
grid point i, j, and C7; is the exact concentration at
grid point i, j. The mass conservation ratio and the
mass distribution ratio measure the amount of nu-
merical diffusion. Note that a method might present a
good mass conservation ratio while maintaining a
poor mass distribution. The average absolute error
measures an average discrepancy of the mass field
from the exact solution. Finally, the maximum abso-
lute error is most sensitive to the displacement and
height of the distribution’s peak.

Table 1 lists the methods examined in this study.
SMOL and GLRK were selected since they are cur-
rently implemented in air quality models—the Urban

Table 1. Numerical advection methods considered and concentrations and locations of the peak of a cosine hill after two revolutions

Method Characteristics References Peak*

Smolarkiewicz method (SMOL) Iterative scheme based on upstream differences. Smolarkiewicz (1983) 26
Positive definite @ (8, 19)

Numerical method of lines Fourth-order directional difference in space. Schiesser (1991) 59

(NMOL) SDRIV2 integration in time. Produces negative Carver and Hinds (1978) @ (7, 16)
concentration Kahaner et al. (1989)

Numerical method of lines NMOL with Forester filter. 44

filtered (FNMOL) Filter parameters: @ (7, 17)
K=1,u=01,m=1,and n=2

Bott method (BOTT) Nonlinear renormalization of advective fluxes. Bott (1989a, b) 73

: Positive definite (7, 17

Emde method (EMDE) Continuous curvature cubic-spline. Emde (1992) 80
Positive definite (7, 17)

Galerkin method (GLRK) Chapeau function Galerkin finite element. MacRae et al. (1982) 90
Produces negative concentration @ (7, 18)

Galerkin method filtered GLRK with Forester filter. 75

(FGLRK) Filter parameters: @ (7, 17)
K=1, =01, m=1,and n=2

Galerkin method filtered GLRK with Forester filter. 43

(FGLRK?2) Filter parameters: @ (7, 17)
K=3,u=02, m=2,and n=4

Accurate space derivative Fourier techniques to accurately compute space Gazdag (1973) 98

method (ASD) derivatives. Third-order Taylor expansion to @ (7, 17)
integrate in time. Produces negative concentration

Accurate space derivative ASD with Forester filter. 98

method filtered Filter parameters: @ (7,17

(FASD)

K=1,u=0.1,m=1,and n=2

*Exact value: 100 @ (7, 17).
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Airshed Model (UAM) (Morris and Myers, 1990) and
the CIT model (Harley et al., 1993), respectively. The
numerical method of lines (NMOL) is selected since it
has not been compared previously with other methods
in a systematic manner and has several potentially
desirable attributes. For instance, NMOL converts
the PDE into a system of ODEs. NMOL can therefore
take advantage of recent progress in the
numerical solution of ODEs. The accurate space
derivative method (ASD) is selected as an alternative
method to those currently used in existing AQMs that
provides greater accuracy (Chock, 1991). Other altern-
ative methods included in this study are the Bott
solver and then Emde solver. The use of parallel
computers opens up the practical uses of the ASD
method, since it requires significantly greater com-
putational time on a sequential machine than the
other methods in Table 1. Some of the methods have
been previously compared by Chock and Dunker
(1983) and Chock (1985, 1991). The present study
builds on Chock’s results and evaluates several of the
methods in a full three-dimensional air quality model,
under both sequential and parallel implementation.

Most of the methods listed in Table 1 are well
described in the literature. Therefore, only the particu-
lar implementation of NMOL used in this study will
be discussed. The numerical method of lines approx-
imates the spatial derivatives of a partial differential
equation with an appropriate finite-difference alge-
braic expression (Schiesser, 1991). The time derivative
of the PDE is left unmodified, leading to a system of
ordinary differential equations in time. The NMOL
implementation used in this study consists of a fourth-
order directional finite-difference approximation to
discretize the spatial derivatives. Namely, for positive
wind velocity

8C, —Ci_3+6C,_,—18Ci_; +10C;+3C;. ©)
ox 12Ax '

Similarly, for negative wind velocity,

9C; —3C;_;—10C;+18C;,; —6Ci12+Cis3
ox 12Ax

(10)

where C, represents the concentration at grid point i in
the one-dimensional sense when solving equations (2)
and (3). It is well known that equations (9) and (10) are
superior to central finite differences from the accuracy
point of view (Carver and Hinds, 1978). The resulting
system of ordinary differential equations is solved
using the SDRIV?2 integrator described by Kahaner et
al. (1989).

3. NONLINEAR FILTERS USED IN THE SOLUTION
OF THE ADVECTION EQUATION

As mentioned earlier, the numerical solution of the
advection equation presents several difficulties. High-
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order algorithms produce spurious waves near sharp
gradient regions that produce physically unrealistic
negative concentrations. To design a filter, one is faced
with the question: What is to be done with the
“negative” mass that appears in the numerical solu-
tion? The simple idea of setting the negative values to
zero is not the proper approach, because it is not mass
conservative; rather “negative” mass must be redistri-
buted over positive concentrations in the solution.
However, there is no specific mathematical or physical
guideline on how to perform such a redistribution. To
address this problem, various “filtering” techniques
have been proposed to remove the negative concentra-
tions and to smooth the positive oscillatory intervals
of the distribution.

There are two main approaches to achieve such
goals. The first approach consists of selectively in-
troducing nonlinear diffusion to the distribution. The
second approach consists of scanning local maxima
and local minima on the distribution and adjusting
selected distribution values iteratively. The filter step
is an important part of the advection computations
since the numerical results can be strongly affected by
the presence of a filter. Various available filters that
can be used in the advection routines in AQMs have
not been compared previously. This section compares
different filtering techniques that have been proposed
in the literature with the goal of determining an
optimal filter for use in AQM:s.

Let o/ be an algorithm (finite difference, finite
element, spectral, etc.) to solve equation (2), expressed

in the form
Cita' = o/ (C!, u) 1y

where the subscript i refers to grid block i. The
redistribution process consists of coupling o/ with a
filter &# in the following way:

Bi=C!
B:+A'=M(Bt, u)
C5+A1=97(Bt+At’ Ct)

(12)

Z must satisfy several conditions that arise naturally
in air pollution models:

(1) Mass conservation. The filter should not add or
remove mass from the system,

Y=Y,

(13)

(2) Positiveness. The filter should remove all nega-
tive values completely,

C!*4>0 forall i (14)

(3) Total variation diminishing. The filter should
guarantee that there are no spurious oscillations near
the regions of sharp gradients. The criterion com-
monly used is the TVD inequality:

TV(C* )< TV(CY) (15)
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Table 2. Filters for numerical advection methods

Filter Characteristics Reference

Bartinicki  Scans negative distribution values. Guarantees Bartinicki (1989)
absence of negative values. Not TVD

Chapman  Introduces local diffusion. Mass conservative Chapman (1981)

Engquist Scans local extrema. TVD. Mass conservative Engquist et al. (1989)

Forester Introduces local diffusion. Mass conservative. Forester (1977)

Requires four problem dependent filter

parameters

where
TV(C) =) I(Cl, 1 = CDI.

(4) Shape preservation. The filter should modify the
minimum number of grid points to enforce conditions

(1)-3).

An appropriate test case used to study the per-
formance of different filters is a simple one-dimen-
sional advection problem with constant wind velocity.
Three different initial conditions, square, triangle, and
cosine hill were selected here. For each initial condi-
tion Courant numbers of 1, 0.5, 0.1, and 0.01 were
used. The Courant number is defined as (u At)/Ax.

Table 2 summarizes the filters studied. A more
detailed description of the filters is given in the Appen-
dix.

4. EVALUATION OF THE PERFORMANCE OF ADVECTION
ALGORITHMS AND FILTERS ON TEST PROBLEMS

This section evaluates the different advection
schemes and nonlinear filters described previously.
The evaluation of advection schemes on test problems
is kept brief here as this aspect has been presented in
detail by Chock and Dunker (1983) and Chock (1985,
1991). As noted above, the evaluation of nonlinear
filters for AQMs, on the other hand, has not been
studied previously. Finally, the selection of optimal
filter parameters is discussed.

4.1. Advection schemes

When solving the advection equation some al-
gorithms exhibit nonphysical oscillations and/or
negative concentrations near steep gradient regions of
the solution. To overcome this difficulty the com-
parison of advection schemes that we will present will
utilize the Forester filtering (Forester, 1977) with filter
parameters, K=1, u=0.1, m=1, and n=2. As we will
show shortly, this set of Forester filter parameters
achieves the best overall accuracy. K is the number of
filtering iterations, and u is a dimensionless diffusion
coefficient. The value of m represents half the wave-
length of the lowest frequency noise. The value of n
does not represent any physical aspect of the filter. It is
simply a numerical parameter that must be large
enough to permit continuity of nonzero C values. The

empbhasis of the comparison in this section is on the
advection solver performance. The choice of the Fore-
ster filter or a particular set of filter parameters does
not give an undue advantage to any one method. If
another filter is selected, the relative accuracy of the
advection algorithms will remain unmodified.

Figures 1 and 2 show the mass conservation ratio as
a function of number of revolutions of the test cosine
hill for the different advection solvers studied. The
Forester filter slightly improves the mass conservation
properties of the schemes; without Forester filtering,
most of the schemes still present an acceptable per-
formance from the point of view of conserving mass.
However, the SMOL method, after one revolution, is
quite mass dissipative. At the other extreme, the
NMOL solver is slightly biased to a higher mass
conservation ratio. Figures 1 and 2 do show undesir-
able properties of SMOL. However, the mass conser-
vation ratio does not present sufficient information to
discern the methods’ relative accuracies.

Figures 3 and 4 show the mass distribution ratio as
a function of number of revolutions of the test cosine
hill. A low mass distribution ratio indicates a high
amount of artificial diffusion present in the numerical
scheme. It can be observed that the use of Forester
smoothing tends to decrease the mass distribution
ratio in all the schemes. ASD seems to be the scheme
least affected when filtering is added. SMOL presents
the poorest mass distribution ratio of all the schemes
studied. Furthermore, Fig. 4 shows that regardless of
its acceptable mass conservation ratio, the NMOL
scheme has a lower mass distribution ratio than the
ASD or Galerkin schemes. Furthermore, it shows that
regardless of their almost perfect mass conservation
ratio, EMDE and BOTT solvers have a mass distribu-
tion ratio worse than ASD and GLRK methods. The
mass distribution ratio of the solvers parallels their
preservation of peak values as reported in Table 1.

Table 1 presents the resulting distribution of peak
magnitude and location after two revolutions for all
the schemes studied. The ASD method presents the
best peak preservation properties. The computation
time used by the GLRK filtered is comparable to that
of the SMOL algorithm. The computation time used
by NMOL filtered and ASD filtered is about an order
of magnitude greater. Results presented in Table 1
agree with those presented by Chock and Dunker
(1983) and Chock (1985, 1991).
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Fig. 1. Mass conservation ratio for unfiltered advection solvers for the rotating cosine hill problem using a
time step of 30rn.
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Fig. 2. Mass conservation ratio for Forester filtered advection solvers for the rotating cosine hill

problem using a time step of 307.

A more challenging test problem, as suggested by
Odman and Russell (1993), was performed. It consists
of using the following velocity field:

u,=0
ug=wR[1—(R/Rp,)*]1  (16)

where u, and u, represent the radial and angular

components of the wind field; w is the angular velocity
at the peak, adjusted so that the peak completes one
full rotation in 240 time steps; R,,, is the maximum of
R as defined in equation (5). This advective field is
characterized by a parabolic angular velocity profile.
A parabolic profile is more challenging than the rigid
body rotation counter-clockwise rotation since it does
not yield constant velocity components along straight
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Fig. 3. Mass distribution ratio for unfiltered advection solvers for the rotating cosine hill problem using

a time step of 30m.
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Fig. 4. Mass distribution ratio for Forester filtered advection solvers for the rotating cosine hill problem

using a time step of 30m.

lines. Results obtained using the parabolic angular
velocity profile present the same relative accuracy for
all solvers as that described in Table 1. However, all
the solvers present a decrease in accuracy as expected.

4.2. Nonlinear filters

Figures 5 and 6 show the performance of the
different filters for Courant numbers of 1 and 0.1,

respectively, as a function of number of integration
steps. The error presented equals that of the unfiltered
solution. The error norms are defined as

lerror|,, =} (Ci(1)— C; () (17

lerror|,, =max(|C()-Ci(0)]).  (18)

The error in the L, norm is an indication of the
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Fig. 5a. L, error norm for the solution to the one-dimensional advection equation with square pulse
initial conditions using a Galerkin solver and various filters (Courant number 1.0).
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Fig. 5b. L, error norm for the solution to the one-dimensional advection equation with square pulse
initial conditions using a Galerkin solver and various filters (Courant number 1.0).

average accuracy of the solution. The error in the L
norm is an indication of the peak conservation of
the solution for the initial conditions used in this
problem. From the computational point of view, the
Courant number determines the upper bound of the
number of neighboring points that contain informa-
tion needed to advance the local solution. Results
presented in Figs 5 and 6 correspond to the Galerkin

algorithm using a square wave pulse as initial condi-
tion. The pulse width is 20 grid points. For reasons of
space, and since other initial conditions and other
advection solvers yield similar results, Galerkin results
are the only ones reported. It was observed that all the
filters except for Bartnicki maintain an excellent mass
conservation ratio for all Courant numbers studied.
Forester filters present the lowest error in the L, and L
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Fig. 6b. L, error norm for the solution to the one-dimensional advection equation with square pulse
initial conditions using a Galerkin solver and various filters (Courant number 0.1).

norm sense for a Courant number of 1 as shown in
Figs 5a and b. Note that for Courant number of 1 the
Chapman filter has no effect on the distribution. For a
Courant number of 0.1, the Forester filter can still be
considered the best filter to be used based on its error
as shown in Figs 6a and b. However, it was observed
that for a Courant number of 0.01 the Chapman filter
performs somewhat better than the rest of the filters.

This Courant number is not a typical condition found
in AQMs.

One of the disadvantages of the Forester filter is
that it requires four parameters that are dependent on
the problem to be solved. These parameters can have a
strong effect on the accuracy of the advection scheme
being filtered as shown in Table 1 in the FGLRK and
FGLRK2 entries. It is observed that using different



Numerical advective schemes

values of such parameters can reduce the peak height
by more than 40%. Therefore, filter parameters should
be carefully selected for a given problem. Forester
(1977) attempted to determine by analysis the proper
parameter values for the adequate control of com-
putational noise. However, the problem becomes too
complex and he concluded that empirical tests should
be used. The parameters must be chosen such that
each is as small as possible without producing nega-
tive concentration values. The values of K and pu
should be small so that artificial diffusion introduced
by the filter is minimized. The values of m and n should
be the smallest values that permit continuity of non-
zero values of the distribution. We have performed an
extensive trial-and-error evaluation to determine the
optimal set of Forester filter parameters using this test
problem. The optimal set of parameters is: K=1, u
=0.1, m=1, and n=2.

Each of the filters described can be applied to any
advection solver. Indeed, the advection solver and
the filter are treated as two independent modular
computational routines in this study. Nevertheless,
Odman and Russell (1993) present a tailor-made filter
for multi-dimensional finite-element methods. It has
been observed in our test runs that a given filter has
the same relative effects on all the advection solvers
evaluated. In summary, the combination of ASD with
the Forester filter shows the best performance for most
of the cases studied. At a low Courant number (0.01),
which is not as relevant for air quality modeling
applications as the other values of the Courant num-
ber studied here, the Chapman filter combined with
ASD presents the best overall performance.

5. EVALUATION OF THE PERFORMANCE OF ADVECTION

ALGORITHMS AND FILTERS IN THE CIT MODEL

As shown in Table 1 and Figs 1-4, the test problems
indicate that ASD is the most accurate of the methods
tested. This section discusses the implementation of
the ASD method in the CIT model and comparison
of the ASD and GLRK methods. This comparison
shows the impact of the advection solver, interacting
with chemistry, on peak pollutant concentrations. On
the basis of the cosine hill tests, SMOL and NMOL
methods have been eliminated from further considera-
tion.

Initial test problems also show that the use of
somewhat different Forester filter parameters with the
Galerkin solver has dramatic effects on the accuracy of
the solution. The ozone concentration predictions of
the CIT model with the Galerkin solver using two sets
of Forester filters parameters will also be compared.
One set corresponds to the filter parameters imple-
mented in the CIT model while the other set corres-
ponds to optimized parameters determined on the test
examples. This comparison shows the impact of the
filter parameters when transport and chemistry inter-
act within an AQM. As a result of the comparison, a
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new set of Forester filter parameters is recommended
to be used with the CIT model.

5.1. Implementing the ASD method in a three-dimen-
sional AQM

The horizontal boundary conditions used to solve
the advection equations within an air quality model

are
u A<0 (19)

(20)

(UC)-A=(u, () Cy (1)) 4,
~VC-4=0, u-A>0

where 7 is the normal to the boundary, and u,(t) and
C,(t) are the specified wind speed and concentration at
the boundary, respectively. If a function is smooth and
periodic its Fourier series does not exhibit the Gibbs
phenomenon. Since ASD involves Fourier transforms,
it requires periodicity to avoid such Gibbs phenom-
enon. Therefore, to implement ASD into a three-
dimensional AQM, first one must use some com-
putational “artifices” while performing FFTs to meet
the periodicity requirement.

There have been different approaches developed to
meet the need for periodicity. Roach (1978) describes a
technique termed “reduction to periodicity”. It con-
sists of splitting the value of the concentrations, C(x)
into a periodic function, F(x) and a polynomial of a
given degree, P(x), C(x)= P(x)+ F(x). The coefficients
of the polynomial P(x) are chosen so that the residual
F(x) has periodic derivatives at the boundaries. To
compute the spatial derivatives of C(x) the fast Fourier
transform (FFT) is applied to F(x) only. The deriva-
tives of P(x) are obtained analytically. Chock (1991)
describes an alternative technique called “periodicity
recovery”. It consists of extending the domain of the
solution and using a polynomial or spline function
fitted to assure periodicity. Wengle and Seinfeld (1978)
proposed to expand C(x) into Chebyshev poly-
nomials. Finally, Gazdag (1973) used mirror tech-
niques that consist of doubling the domain with the
mirror image of the data to be transformed. The ASD
transport solver was implemented into the CIT photo-
chemical model using periodicity recovery.

Currently, the chemistry solver for AQMs is the
most computationally intensive part of the numerical
solution. For instance, the CIT model with the Galer-
kin advection routine spends about 90% of its CPU
time on the chemistry solver and approximately 5%
on the horizontal transport solver. Implementing
ASD into the CIT model, as executed on a sequential
computer, causes the full model to run four times
slower than when using the Galerkin advection solver.
The reason that ASD requires greater CPU time than
Galerkin is that ASD performs three FFTs and three
inverse FFTs computations per time step. On the
other hand, the Galerkin method only solves a tridiag-
onal system per time step. Table 3 presents detailed
timing data for a 24-h run of the CIT model on an
IBM RISC 580 (sequential architecture) for different
modeling cases.
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Table 3. Performance and CPU usage distribution for a 24-hour simulation of the South Coast Air Basin under different
numerical schemes

Total Chemistry Other Relative Chemistry Other
Transport Chemistry time (s) integration (s) comput. (s) speed comput. (s) % comput. %
Galerkin On 4419.08 3967.66 451.42 10.52 89.78 10.22
Galerkin Off 419.94 0.00 419.94 1.00 0.00 100.00
ASD On 17507.12 3975.30 13531.82 41.69 22.71 77.29
ASD Off 13327.46 0.00 13327.46 31.74 0.00 100.00

5.2. Evaluation of the Galerkin and ASD methods in
the CIT model—Sequential implementation

The simulations reported here are for the same
conditions as those reported in Harley et al. (1993) for
27 August 1987 in the South Coast Air Basin. The
reader is referred to Harley et al. (1993) for all details of
the simulation.

Figure 7 shows the predicted ground-level ozone
concentrations in the South Coast Air Basin at 14:00
hours on 27 August 1987. The computations were
performed using the Galerkin solver and Forester
filter with the parameters originally used in the
model, K=3, u=0.2, m=2, and n=4. Previous tests
(FGLRK and FGLRK2 entries in Table 1) indicate
that these parameters introduce excessive artificial
diffusion in by the filtering step. Figure 8 shows the
predicted ground-level ozone concentrations for the
same conditions as in Fig. 7 with the only change
being that the filter parameters are selected as K=1,
=0.1,m=1, and n=2, those found in the test example
described above to produce the best concentration
peak results. It is observed that with the new filter
parameters an ozone peak appears in the north west
region of the modeled area, the ozone peak in the
eastern part of the region expands in size, and thereis a
small decrease in the ozone peak of the south central
region of the domain. Figure 9 shows CIT model
predictions using the ASD method as the advection
solver with the new filter parameters. Ozone maxima
are predicted in the same location as with the Galerkin
method with the corrected filter parameters. However,
when the ASD method is used the ozone maxima in
the eastern portion of the South Coast Air Basin are
enhanced by about 20 ppb, attributable entirely to
the better properties of the ASD method relative to the
Galerkin method. These results indicate that the
choice of advection routine in a photochemical air
quality model can have a measurable effect of pre-
dicted levels of ozone and other species.

6. PARALLEL IMPLEMENTATION OF ADVECTION
SCHEMES

The use of the ASD method requires a significantly
greater amount of computer time than the Galerkin or

Smolarkiewicz methods currently implemented in
AQMs. This is a major practical disadvantage if
sequential computers are to be used. To overcome this
problem ASD can be implemented on a parallel
computer. The basic idea behind the parallel imple-
mentation of the advection solver is to perform the
transport computations of all rows or columns simul-
taneously. This section discusses three approaches to
implement the transport computations in parallel:
Extended Arrays (EA), Designated Transport Nodes
(DTN) and Dynamically Balanced (DYB).

The solution of the advection equation in parallel is
more challenging than the integration of the chemistry
portion of an AQM. Transport calculations inherently
require nonlocal data (i.e. concentration values, wind,
etc.) to be able to predict the grid concentration values
after each transport step. Furthermore, AQMs typi-
cally spend less than 10% of their CPU time solving
the advection operator. Due to the challenges pre-
sented by parallelizing transport and to the relatively
small computational time required by most advection
solvers, one might conclude at first thought that
perhaps it is not effective to perform transport com-
putations in parallel. This is not the case. The speed-
up predicted by Amdahl’s law becomes increasingly
sensitive to the fraction of the code that is already
parallelized. In the case of air quality models, in which
about 90% of the computations are parallelized, the
speed-up gained by implementing transport com-
putations in parallel is predicted to become significant.

The numerical solution of the advection equation
requires neighbor grid cell data that are not always
available in local nodes. The number of neighboring
grid cells required is dependent on the underlying
transport algorithm used. For instance, a second-
order finite-element method needs two neighboring
grid cells in each direction to predict the local grid cell
concentration. A spectrally accurate method, like
ASD, needs all the data of the entire row or column to
be able to predict any local grid cell concentration.
The reason for such data dependency is that spectral
methods involve global operations like the trans-
formation of data to the Fourier domain. Finite
element algorithms and spectral methods are perfect
examples to show the wide differences in data flow
structures imposed by two transport solvers. The
optimum technique to implement is dependent on the
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Fig. 7. Ozone concentrations at 14:00 h (27 August 1987) predicted by

the CIT model using the Galerkin advection solver and filter para-
meters: K=3, uy=0.2, m=2, and n=4.
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Fig. 8. Ozone concentrations at 14:00h (27 August 1987) pre-
dicted by the CIT model using the Galerkin advection solver and filter
parameters: K=1, u=0.1, m=1, and n=2.
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Fig. 9. Ozone concentrations at 14:00h (27 August 1987) pre-

dicted by the CIT model using the ASD advection solver and filter
parameters: K=1, u=0.1, m=1, and n=2.
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numerical method used to carry the transport step, the
degree of modularity and portability desired, and the
number of nodes available.

The following are desirable characteristics for the
ideal implementation of transport solvers in a parallel
environment:

(1) Minimum communication. The message passing
time spent on interprocessor communications is ex-
pensive relative to computational time. It is desirable
to pass a single long message rather than an equivalent
message size using various send/receive operations,
the reason being that every time a message is passed
there is initialization overhead involved in the process.
The ideal implementation would minimize the data
flow among nodes.

(2) Portability. The parallel implementation should
contain only simple synchronous or asynchronous
sends and receives. It should avoid global message
operations such as broadcast, global sums, etc. The
reason for such constraints is that all the message
passing protocols (e.g. PVM, P4, NX, EXPRESS)
support such operations allowing the code to be easily
ported among different parallel compilers.

(3) Modularity. The code should be modular in the
sense that the transport solver of the model is a single
routine that can be easily replaced by a different
algorithm. In addition, the parallel code should be
written in such a way that the data flow between
nodes, for any number of nodes, remains unmodified
for any advection solver. Modularity should be main-
tained while keeping the internode communication to
a minimum as described in equation (1).

(4) Load balance. To perform a horizontal trans-
port step it is necessary for a particular node to receive
nonlocal data from one or more other neighboring
nodes. At times, some of the neighbor nodes are still
performing other computations and cannot send the
data at the exact time of request. As a result, the node
requesting the data stays idle until the neighbor node
is able to perform the send operation. The ideal
parallel implementation would minimize such idle
time spend between sends and receives of data among
all nodes.

Extended Arrays, EA (Fox et al, 1988), is an
implementation that minimizes internode communi-
cation while optimally maintaining the CPU load
balance. The name implies that local concentration
arrays are extended at the boundaries to make room
for the data needed. Each node sends the boundary
concentration data to all its neighbors. The number of
grid cells sent as boundaries is the minimum one
imposed by the advection solver used. Each node will,
of course, receive data from its neighbors. After the
data are received all the nodes perform the transport
step locally in small domains. The use of EA in AQMs
is recommended when the algorithm used requires a
few grid cells located in neighbor nodes and speed is
the primary concern. The EA approach to implement-
ing the transport is not modular. When using EA

AE 28:20-M
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techniques, changing the algorithm requires extensive
modifications to the parallel implementation.

To overcome modularity problems presented by the
EA approach one can designate a particular node that
receives not only the boundary of grid cells located in
the neighbor nodes, but all the grid cells of a particular
row or column. After receiving the data, the de-
signated transport node performs the transport com-
putations and then sends back the new grid cell
concentrations to the appropriate nodes. All columns
or rows are being processed simultaneously at a given
horizontal transport step. This approach is named
Designated Transport Node, DTN. The results pre-
sented by Dabdub and Seinfeld (1994) were based on a
DTN approach to implementing the transport in
parallel. The advantages of DTN are that it is easy to
code and is fully modular. DTN is easy to code since
the programmer is not concerned about nodes with
special cases. When implementing EA for a variable
number of processors the programmer must be careful
about corner nodes that have no neighbors. DTN is
fully modular, like the sequential case, because the
node performing the transport step has all the grid cell
concentrations in case they are needed by a specific
transport solver. On the other hand, DTN has two
main disadvantages: it is slower than EA and it is not
well balanced. To gain modularity DTN requires a
greater number of internode communication than EA.
The increase in communication traffic decreases per-
formance results. In addition, if the number of rows or
columns is smaller than the number of nodes avail-
able, DTN presents load imbalancing that affects
performance further. Typical urban AQMs have less
than 100 rows or columns. If there are 512 nodes
available DTN will leave most of the nodes idle when
performing the transport computations.

The Dynamical Balance, DYB, approach is an
attempt to maintain the modularity of DTN while
increasing its performance by decreasing the idle node
time. Instead of having a predetermined node to
perform the transport computations for all the species
and layers of a particular row or column, DYB assigns
the first N ground rows or columns to be performed in
the first N nodes, where N is the number of available
nodes. The next N rows or columns continue to be
evenly distributed among the available N nodes. This
distribution continues until all rows or columns have
been assigned a transport node. Figure 10 illustrates
the X-transport distribution of a computational do-
main with three layers containing five rows each
among three nodes. The number assigned to each row
corresponds to the node number in which the trans-
port computations will be performed for the row. Note
that, to maintain the load as balanced as possible, the
distribution of rows or columns in layer m starts with
the node number having fewer rows or columns
assigned in layer (m—1). As it can be seen, the DYB
approach provides a well balanced load while main-
taining the modularity of the code. Nevertheless, the
programming required to implement DYB for the
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Fig. 10. Example of row distribution to per-
form X-transport computations using a
DYB approach to implement transport. The
example is based on a three-layer domain
containing five rows. The numbers shown in
each row denote the processor number
where the transport computations for such
row are to be performed.

general case (any number of rows, columns, layers and
nodes) requires more effort than EA or DTN. The
main advantage of DYB is that it reduces the overall
idle time of the nodes, especially in the massively
parallel regime.

Figure 11 shows the CPU time vs the number of
processors for a DTN and DYB approach to the
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parallel implementation of the CIT model using the
Galerkin solver. The model was run on the Intel
Touchstone Delta using NX as the message passing
protocol. Figure 11 shows that similar times are
required using the two different approaches to imple-
ment the algorithm in parallel. It is observed that the
CPU time starts to flatten in the high number of
processors regime. The reason for such behavior is
that the workload required by the Galerkin solver is
so light that it does not benefit from having extra
nodes to perform it. Indeed, it is observed that the case
for 256 nodes is slightly slower than the 128 nodes
since at that point the nodes start to interfere with
each other to efficiently carry out the computations.
When using the Galerkin algorithm, the nodes spend a
small fraction of their time performing the transport
step. Therefore, the potential idle times induced by
DTN are not significant. In general, when using any
transport solver that it is not computationally inten-
sive, the simple and easier to code DTN approach
should be followed. The best speed-up observed for
the Galerkin algorithm is 30.01 when using the DYB
approach and 128 nodes.

Figure 12 shows the CPU time versus the number of
processors for a DTN and DYB approach to the
parallel implementation of the CIT model using the
ASD solver. It is observed that the CPU also flattens
in the high number of processors regime for the DTN
approach. In this case, the flat region does not occur
because the workload is light, but because the number
of processors at that point exceeds the number of rows
or columns in the computational grid. As a result,
increasing the number of nodes for the DTN approach
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Fig. 11. CPU time for a 24-h simulation of the South Coast Air Basin vs number of nodes for the Galerkin
transport implementation of the CIT model using DTN and DYB implementation strategies.
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Fig. 12. CPU time for a 24-h simulation of the South Coast Air Basin vs number of nodes for the ASD
transport implementation of the CIT model using DTN and DYN implementation strategies.

only increases their idle time. For the ASD method the
DYB approach is clearly superior, especially in the
massively parallel regime. The best speed-up factor
observed for the ASD algorithm is 87.71 when using
the DYB approach and 256 nodes. In general, when
using a computationally intensive transport solver
and performing the computations using a high num-
ber of nodes the DYB approach should be followed.

7. CONCLUSIONS

Our results confirm those of Chock that the ASD
method stands as the best advection scheme tested
based on its mass distribution ratio, mass conserva-
tion ratio, average absolute error, and peak preserving
properties. Its high accuracy, however, is achieved at
the price of a greater computation time that might be
unacceptable on a sequential machine. However, with
the use of parallel computers the computational time
is substantially reduced. Indeed, it is well known that
using a more CPU-intensive algorithm for a given
amount of interprocess communication results in
greater speed-ups on a parallel environment. A typical
24-h simulation using a Galerkin solver on the CIT
model takes about 25 min using 256 nodes on the
Touchstone Delta. The same run, using the more
accurate ASD solver takes about 30 min using 256
nodes on the Touchstone Delta.

The second-best algorithm tested was the finite-
element Galerkin scheme. If computation time is a
constraint, as when running AQMs on sequential

machines, the Galerkin algorithm is recommended.
The Smolarkiewicz advection solver was found to
produce poor results for the tests performed. There-
fore, the use of this method in the UAM model should
be reconsidered.

For Courant numbers relevant for air pollution
modeling (greater than 0.1) the Forester filter performs
the best for all the cases studied. The Forester filter
parameters are found to have a significant impact on
the results of the advection solver. In particular, we
have been able to optimize the choice of the filter
parameters used in the CIT model as K=1, u=0.1,m
=1, and n=2. Implementing these filter parameters
into the CIT model leads to ozone peaks that are not
present with the previous filter parameters. The ASD
method confirms the validity of such peaks, and
produces a greater concentration at the peaks as
expected.

When implementing the advection solver in a paral-
lel environment the EA approach should be used if
speed is the greatest concern. DTN offers a fully
modular approach that is easy to code, but it sacrifices
some performance. DTN is recommended when the
number of nodes available is smaller than the number
of rows or columns in the computational region of the
AQM and a fast transport solver is being used such as
Galerkin. Finally, the DYB approach is recommended
when computing in the massively parallel regime while
using intensive transport solvers such as ASD.
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APPENDIX

Description of filters

Bartnicki filter. The Bartnicki filter (Bartnicki, 1989) uses
the simplest redistribution strategy. It consists of adding all
the negative mass and subtracting equal amounts from all
positive values present in the distribution. The total amount
of the mass subtracted from the positive values equals the
total initial negative mass. The filter does not modify zero
values of the distribution. Note that if all distribution values
are nonnegative the filter does not alter the distribution. It
has been found that two iterations are sufficient to remove all
the negative mass in the cases studied. While, this strategy
guarantees the absence of negative values present after the
filtering step, the filter does not sufficiently smooth the
solution’s positive oscillations.

Chapman filter. FRAM (Filtering Remedy and Methodo-
logy) was presented by Chapman (1981). The idea behind the
filter is to introduce a strong nonlinear dissipation to the
advection equation to dampen spurious oscillations. The
FRAM algorithm can be outlined as follows:

(1) Calculate a provisional advanced time solution C:*4
using a higher-order scheme.

(2) Calculate local bounds on the advanced time solution.
In one dimension and constant wind velocity the bounds are

Clmn=min(Ci_, Ci, Cisy) (A1)
Cimx=max(Ci_,, Ci, Ci, ). (A2)

(3) Introduce local diffusion where the provisional solution
is not within the bounds. Conserving C, the local diffusion is
introduced as

C:+A‘=C;E+m+(“§+“':+1)(C:+1 ~C)

+lg+af HCi-, - C) (A3)



Numerical advective schemes

where «! can be thought of as a diffusion coefficient that is
computed using the provisional concentrations bounds com-
puted in equations (A2) and (A3).

Engquist filter. Engquist et al. (1988) have proposed a
series of nonlinear filters of differing complexity. The filters
do not introduce any diffusion to the advection equation. The
basic algorithm behind all the filters proposed is

(1) Scan C!** and correct the i-values that are local
maxima or local minima. Corrections are made by decreasing
the maxima and by increasing the minima.

(2) If point i is to be corrected, the same correction must be
subtracted from point i — 1 or i + 1, whichever has the greatest
distance to C}*4.

(3) No value may be corrected so that it is a new extremum.

The filter implemented in this study is algorithm 2.4
described by Engquist et al. (1988). It makes the smallest
correction to the distribution while still being TVD.

Forester filter. To dampen the spurious oscillations the
Forester filter (Forester, 1977) introduces a local diffusion to
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ensure that local extrema are separated by 2n mesh intervals.
The filter uses n as a parameter, as wellasm, K, and . K is the
number of filtering iterations and u is a dimensionless
diffusion coefficient. The parameters m and n determine the
noise wavelength to be filtered. These free parameters are
problem dependent and they might significantly affect the
performance of the filter. The Forester filter is described by
the following iterative scheme:

u
C:‘H =C?+E[(Ci+l_ci)(ll’i+|//i+ 1)
)

—(Ci— Ci ) i+ b= 1)) (A4

where Ck*1 is the value of C; after k iterations of the filter.
The values of , are either O or 1 and determine the points at
which smoothing occurs. They are computed from the filter
parameters m and n.



