Pergamon

Atmospheric Environment Vol. 28, No. 9, pp. 1679-1687, 1994
Copyright © 1994 Elsevier Science Ltd

Printed in Great Britain. All rights reserved

1352-2310/94 $7.00+0.00

AIR QUALITY MODELING ON MASSIVELY
PARALLEL COMPUTERS

DonaLp Daspus and JouN H. SEINFELD
Department of Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, US.A.

(First received 26 March 1993 and in final form 13 October 1993)

Abstract—The use of massively parallel computers provides an avenue to overcome the computational
requirements of air quality modeling. General considerations on parallel implementation of air quality
models are outlined including domain decomposition. The implementation of the CIT urban photochemi-
cal model on the Intel Touchstone Delta, a distributed memory multiple instruction/multiple data (MIMD)
machine is described. When both the transport and chemistry portions of the model are parallelized,
a speed-up of about 30 is achieved using 256 processors.

Key word index: Air quality modeling, parallel computers.

1. INTRODUCTION

Air quality models are essential tools in the under-
standing of pollutant dynamics in the atmosphere. In
recent years, our understanding of the scientific
foundations of the chemical and physical phenomena
occurring in the atmosphere has continued to expand.
We are able to construct comprehensive models that
describe the dynamics of air pollution. The inherent
complexity and nonlinearity of the governing equa-
tions has made air quality modeling a computational
“Grand Challenge” (Levin, 1989). Currently, air qual-
ity modeling is most often performed on sequential
computers.

Computational constraints have always been a lim-
iting factor in the amount of physics and chemistry
one can include in air quality models (AQMs). For
example, particulate formation processes are not cur-
rently incorporated in most models due to the signific-
ant time demands of the aerosol phase computations
(see, for example, Pilinis and Seinfeld, 1988). Phe-
nomena occurring in the sub-grid scale are also ignor-
ed or crudely represented by current AQMs. The use
of parallel computers provides an avenue to overcome
the computational requirements of air quality
modeling.

The work reported here has as a major goal to
lay the foundation to implement air quality models
on parallel computers. To accomplish this goal it is
necessary to study and compare different approaches
to distribute the computational work among the
available nodes. It is necessary to test, compare, and
evaluate current numerical schemes employed in the
solution of AQMs. Implications of parallel computa-
tion on restructuring of the input and output data
must also be examined.

2. COMPUTATIONAL BREAKDOWN OF
CURRENT AQMS

The governing equation of three-dimensional Eu-
lerian AQMs is the atmospheric diffusion equation

de,
£+u-Vci=V-(K-Vc.~)+R,~(c,T)+S,-(x,t) (1)

where ¢; are the elements of the concentration vector
¢, t is time, x =(x, y, z), u=(u, v, w) is the advective flow
field, K is the eddy diffusivity tensor, R, is the chemical
production of species i, T is the temperature, and S; is
the source rate of i.

The different chemical and physical processes that
contain inherently wide variations in their time scales
pose the major challenge in constructing numerical
methods to solve equation (1). Operator splitting
methods have been developed and refined for the
solution of AQMs (McRae et al., 1982a). Splitting
methods provide a numerical approach that is both
accurate and economical.

The basic idea of the splitting process is the sequen-
tial use of operators, .#, that govern the different
phenomena. Horizontal transport is described by

Jc;
ot
where H represents the (x, y) plane. Vertical transport
is described by

aC,' 0, 0 6ci
gzci—a— —'a—z(WC,)‘f‘EZ‘(KzzE) (3)

gﬂci= = _VH'uCi+VH'KVHCi (2)

Finally, chemistry and emissions are described by

fcci=%=Ri(c, T)+Si(x,1).]

1679

1680

In some AQMs %, the horizontal transport oper- -
ator, is decomposed into two separate operators, %,
and .%,, describing the transport in the x and y direc-
tions, respectively. In addition, current AQMs often
combine %, and %, into a single operator %,, that
performs the chemistry and vertical transport com-
putations simultaneously.

Table 1 summarizes several existing AQMs from
the point of view of their computational character-
istics. UAM and CIT are urban scale air quality
models. Urban models typically have a vertical do-
main extending up to about 2 km, as opposed to
regional models that extend up to about 10 km in
order to treat vertical redistribution of species above
the planetary boundary layer. RADM, ADOM and
STEM-II are regional acid deposition and oxidant
models that treat gas- and aqueous-phase chemistry.
They have been applied primarily to simulations of
acid deposition in eastern North America and central
Japan. ROM is a regional oxidant model designed to
simulate ozone formation and transport over the east-
ern United States.

The solution of the atmospheric diffusion equation
in the operator splitting framework is obtained from
the following sequence:

ct+2At = gﬁrgzy&tg?zmg?tgérct X (5)

The amounts of time spent computing the solutions of
the different operators of the CIT model, for example,
are: chemistry 85.2%, horizontal transport 5.4%,
“other” 9.4%. The chemistry loop of the code contains
the vertical transport computations since they are
coupled in the Z,., operator. In addition, the chem-
istry loop also contains the deposition computations
for all the species within all air columns, as well as the
vertical transport routines. All these computations
make up approximately 90% of the code. “Other”
represents the reading and writing of data, the initial-

D. DaBpUB and J. H. SEINFELD

ization of the model, and other minor computations.
It is expected that other three-dimensional AQMs
have approximately the same computational break-
down.

Most of the computer time involved in solving the
core equations of urban and regional scale photo-
chemical models is consumed by the .%,, operator.
The “chemistry” part of the operator consists of solv-
ing a coupled system of stiff, nonlinear ordinary differ-
ential equations as described by equation (4). Classical
methods for solving systems of stiff ordinary differen-
tial equations, such as Gear’s method, are not of
practical use in AQMs. The reason is due not to their
accuracy, but to the small time steps required, the
inversion of large matrices, and/or repeated solution
of large sets of nonlinear equations. A comparison of
different numerical schemes to perform the integra-
tion of the chemistry in AQMs can be found in Hov et
al. (1989) and Odman et al. (1992).

The solution of the advection—diffusion equation (2)
requires 5.4% of the computational time in the CIT
model. When solving this equation numerically, de-
pending on the scheme used, both the amplitudes and
the phases of different Fourier components of the
solution will be altered. This produces so-called nu-
merical diffusion and dispersion. This is a classic
problem in computational fluid dynamics, for which
a large number of specialized numerical techniques
have been developed (Rood, 1987). Many have been
tested and compared to determine their applicability
to AQMs (Chock, 1985, 1991; Chock and Dunker,
1983). The numerical method currently implemented
in the CIT model, for example, employs a fourth-
order (space) Chapeau-function based finite element
scheme as part of an implicit procedure to solve the
advection part of #y. Following the advection step,
a nonlinear noise filter is used to remove most of
the computational noise generated by the scheme

Table 1. Aspects of current photochemical and acid deposition models

Model Vertical Horizontal Gas-phase Aqueous-phase Transport

resolution resolution chemistry chemistry

UAM 4 layers up 4km x4 km to 71 Reactions Not treated 3D wind field

to 1.5 km 10 km x 10 km 30 Species

CIT 5 layers up Skmx Skm 71 Reactions Not treated 3D wind field
McRae et al. (1982b) to 1.5km 30 Species
Harley et al. (1993)

ROM 3 layers up 18 km x 18 km 71 Reactions Not treated 3D wind field with
Lamb (1982) to 2 km 30 Species vertical transport
Schere and Wayland through cumulus
(1991) clouds

RADM-II 15 layers up 80 km x 80 km 104 Reactions 42 equilibria, 5 3D wind field with

Chang et al. (1987)
STEM-II
Carmichael et al. (1986)

ADOM
Venkatram et al. (1988)

to 10 km
10-14 layers
up to 6 km

12 layers up
to 10 km

10 km x 10 km to
56 km x 56 km

60 km x 60 km to
120 km x 120 km

58 Species

112 Reactions
53 Species

~100
Reactions
~50 Species

rxn for SO,
oxidation

26 equilibria, 30
rxn for SO, and
NO, oxidation
25 Reactions

13 Species

vertical transport
through cumulus
clouds

3D wind field with
vertical transport
through clouds
3D wind field with
vertical transport
through clouds

Air quality modeling on massively parallel computers

(Forester, 1977). Finally, the diffusion step is com-
puted with an explicit second-order finite difference
scheme (McRae et al., 1982a). In brief, the challenges
of solving equation (2) relate largely to computational
accuracy.

The analysis of where computational effort is ex-
pended shows that a parallel implementation of an
AQM should start by focusing on performing the
chemistry integrations simultaneously on different
processors.

3. PARALLEL ARCHITECTURES

Traditionally, parallel architectures can be classi-
fied into two broad categories: SIMD and MIMD.
Each has different programming approaches.

SIMD architectures, denoting single instruction/
multiple data, execute the exact same instruction on
different sets of data simultaneously. SIMD machines
are well suited for problems that primarily require the
manipulating of large matrices.

MIMD architectures, for multiple instruction/mul-
tiple data, can execute different instructions on differ-
ent sets of data simultaneously. The way that the
different processors communicate determines the dif-
ferent flavors of MIMD. In a shared-memory MIMD
computer, all the processors have access to a common
memory. Shared-memory MIMD machines are rela-
tively easy to program, but they are limited by scala-
bility and they might present cache-coherency prob-
lems. On the other hand, in a distributed-memory
MIMD machine every processor contains its own
local memory. Distributed-memory MIMD machines
are also known as multicomputers. Intel’s Touchstone
Delta is one of the newest and fastest multicomputers.
A network of workstations optically interconnected
qualifies also as a parallel multicomputer.

It is not currently known with full certainty which
architecture provides the best environment for air
quality models. The issue of exploiting the different
advantages of a given parallel architecture still re-
mains to be studied. Carmichael et al. (1989) have
studied the solution of transport/chemistry calcu-
lations on SIMD machines. They have observed that
simple (4 species) chemical mechanisms are well suited
for SIMD machines. However, the implementation of
transport algorithms efficiently on SIMD machines
leaves much to be desired.

Pai and Tsang (1992) have used different shared-
memory MIMD machines to study common time-
splitting finite difference or finite element schemes
used in air pollution modeling. Specifically, they
simulated turbulent diffusion in convective boundary
layers. The highest speed-up reported is 13.11 using
a Sequent Symmetry S81 machine.

Shin and Carmichael (1992) have parallelized the
STEM-II air pollution model. They used a shared-
memory ALLIANT FX/8. Their work focused on
parallelizing the chemistry portions of the model. The

1681

speed-up reported reached 2.5. Furthermore, they
mention that the efficient use of vectorization would
require alternative algorithms.

We report here on the use of distributed-memory
MIMD machine architectures for air quality
modeling. We have implemented the CIT model on
the Intel Touchstone Delta (Intel Corporation, 1991).
The Delta contains 570 nodes: 528 numeric nodes, 34
mass storage nodes, 2 gateway nodes, and 6 service
nodes. The nodes are interconnected as a two-dimen-
sional mesh. A maximum configuration would pro-
vide 10 Gigabytes of distributed main memory and
200 Gigabytes of online storage.* The 528 numeric
nodes are based on the 64-bit Intel i860 microproces-
sor. The i860 has a peak speed of 60 double-precision
MFLOPS and 80 single-precision MFLOPS. Each
numeric node includes 16M bytes of parity-check
DRAM, a 4K byte instruction cache, and an 8K byte
data cache.

The programming was done in FORTRAN 77 us-
ing NX version 1.4 as the extended communication
library used for message passing. The issue of software
portability requires special attention to different as-
pects of the programming. First, only the simple syn-
chronous send and synchronous receive routines
should be used. By avoiding the use of more sophistic-
ated message passing routines, a degree of freedom is
gained on code portability. That is, porting of the
paraliel code to other message passing routines such
as EXPRESS, LINDA, or PVM can be achieved by
replacing the low level synchronous sends and re-
ceives with the appropriate library call. Furthermore,
the use of NX as the underlying message passing
library makes the code executable on other parallel
computers commercially available with no changes.
Specifically, the code has been run successfully on the
Intel GAMMA, the IPSC and IPSC2. Second, one
should write general purpose send/receive routines.
By doing so, these general send/receive routines can
call any appropriate communication protocol de-
pendent send,/receives. Third, the code should be inde-
pendent of the number of nodes available. The num-
ber of nodes available should be determined at execu-
tion time or given as a parameter so that no further
code modifications are needed. Finally, the use of
parallel file systems should be avoided from the point
of view of portability (not performance) since they are
highly architecture-dependent.

The use of MIMD machines provides a promising
approach to AQM calculations. MIMD provides
a friendly environment for SPMD (single process mul-
tiple data) and for MPMD (multiple process multiple
data) programming methodologies. The chemistry

* Currently, three-dimensional air quality models consid-
ering only gas-phase phenomena do not impose extreme
memory requirements, nor extreme storage space require-
ments. However, with the implementation of aqueous phase
and/or aerosol phase, the memory and storage requirements
would increase drastically.

1682

computations in AQMs follow a SPMD approach,
while the transport computations, as described below,
inherently follow a MPMD approach. By definition,
SIMD architectures are not suitable to MPMD pro-
gramming. Furthermore, the usage of distributed-
memory MIMD opens the possibility of porting the
code to a network of workstations, which might be
more readily available than a parallel supercomputer.
In short, MIMD seems to be the most promising
architecture to perform AQM computations.

4. KEY ISSUES IN THE PARALLEL IMPLEMENTATION
OF AQMS

The first step towards parallelizing a code such as
an AQM is to perform a detailed profile of the code.
A code profile, as discussed earlier, shows the com-
putational breakdown of the code, that is, the com-
putational time spent in each routine for an entire run.
In principle, the computationally intensive parts are
the desired subroutines to be performed in parallel.
For the case of comprehensive AQMs, as noted
above, the most computationally intensive routine is
the chemistry integration. The amount of time spent
here ranges from 75 to 95% of the total computing
time.

The next issue of concern is that of data depend-
ency. The AQM chemistry portion does not present
any difficulty on data dependency. All the data needed
to compute the vector of species concentrations after
the chemical changes of the corresponding time step
are local. The results of the chemistry integration at
a particular grid point do not depend on the concen-
trations at other grid points. On the other hand,
transport computations, regardless of the numerical
scheme used, are, in principle, dependent on data
located at neighboring grid points. Communication
among the nodes is therefore imperative. The imple-
mentation of node communication is dependent on
the transport numerical scheme used, as well as on the
decomposition of the domain implemented.

Speed-up is a common measure of performance
gain from a parallel environment. It is the factor
denoting how many times faster the parallel version of
the code runs in comparison to the sequential version.
Indeed, it is defined as the ratio of the time required to
complete a job using one processor to the time re-
quired to complete the same job with N processors.
The maximum speed-up is limited by the fraction of
that job that is performed in parallel, p. An ideal
speed-up, S, achieved with parallelization is described
by Amdahl’s law

S : (6)

(1-p)+p/N’
The speed-up is ideal in the sense that it does not
account for the time taken to send/receive messages.
Increasing p by a small amount at a point where
a significant amount of the code is already parallel-

D. DasDpUB and J. H. SEINFELD

ized, say for p>0.96, produces substantial additional
speed-up.

4.1. Domain decomposition

The objective of domain decomposition is to dis-
tribute the computational load as evenly as possible
among the available nodes. The different ways to
decompose the three-dimensional spatial domain
present several questions to be addressed for an effect-
tve parallel AQM implementation. There are two
main approaches to this matter.

The first approach to decompose the domain is
called dynamical domain decomposition. One starts
with a number of tasks to be performed. A so-called
“master” node is in charge of sending one of those
tasks to a node that is idle at the moment. The idle
node receives the message and some appropriate data
needed to perform the task. The appropriate data
might come from the master node and/or from other
nodes that should be notified of such requests. After
the task is completed, the node sends the results to the
master node, or to other nodes, and/or keeps it stored
in its own memory. The node also signals the master
that it has finished the task. The process is continued
in this way until all the desired tasks are performed.

The other approach to distribute the computa-
tional load is to set a predetermined decomposition.
In this case, the master sends a specific number of
tasks to each node. The tasks are distributed at once
among the available nodes. The nodes, when having
completed their collection of tasks, signal the master
that they have done so. The advantage of this tech-
nique arises when the programmer is able to set an
approximately evenly distributed set of tasks. The
technique also facilitates debugging of the code, since
the programmer knows what task is in what node.
Furthermore, there is a decrease in overhead work
since the communication between the nodes and the
master node is minimized.

Another issue to be considered while determining
the domain decomposition to be used is the dimen-
sionality of the decomposition. One has to decide on
performing either a one-dimensional or a two-dimen-
sional decomposition. Fox et al. (1988) discuss the
implications of the dimensionality of the decomposi-
tion. In the case of AQMs the chemistry computations
are independent of the dimensionality of the de-
composition. However, the dimensionality of the de-
composition will likely affect the transport computa-
tions.

Figure 1 shows the different domain decomposi-
tions used as a function of the number of slave nodes
available for the simulation of the South Coast Air
Basin using the CIT model. The rectangle represents
the x—y projection of the master data storage grid of
the model. The grid is currently subdivided into 80
cells in the x-direction, 30 cells in the y-direction, and
5 layers. An individual cell in the figure represents
a 5x5km? area. The shaded section in the 1-node
case of Fig. 1 represents the computational region

Air quality modeling on massively parallel computers

3 Nodes

7 Nodes

1683

1 Node

uonisodwodsaq urewoq

Fig. 1. Domain decomposition of the South Coast Air Basin region for different numbers of slave nodes. The dark rectangle
represents the overall domain. The gray shaded area represents the computational domain. Different shades of gray represent
sub-sections of the computational domain to be distributed to a specific node.

within the overall region. In the 3-node and 7-node
decompositions of Fig. 1 the alternations of gray
shades indicate the boundaries of the data as they
are distributed among the available slave nodes. As
can be seen, we have implemented a domain decom-
position as close to a purely one-dimensional decom-
position as possible. The reason to stay close to the
one-dimensional case is discussed subsequently in the
Horizontal Transport sub-section.

The rule followed to determine the domain de-
composition is to have an approximately equal num-
ber of vertical columns sent to each node. In this
manner, the load is well balanced. For chemistry
implementation purposes only, the efficiency of the
implementation is not dependent on the dimensional-
ity of the decomposition.

4.2. Chemistry

As mentioned before, chemistry computations are
the major computational load of typical AQMs. Their
parallel implementation is rather simple since it does
not involve communication among the “slave” nodes.
The chemistry integrator used in the CIT model is an
implicit, hybrid, asymptotic, exponential scheme de-
veloped by Young and Boris (1977). Parallel imple-
mentations of the chemistry integrator are a function
neither of the numerical scheme used for the integra-
tion nor of the particular photochemical mechanism.
Thus, parallel implementation of the chemistry does

not interfere with the modularity of the code to any
degree.

An effective approach is to send a collection of
vertical columns to a node, using a predetermined
domain decomposition. The programmer can set
a predetermined decomposition rather easily in an
AQM. Assuming that the time it takes to integrate
any vertical column of cells is approximately the
same, then one tries to send the same number of
vertical columns to each slave node available, so that
all the nodes finish their tasks at approximately the
same time. The number of columns to be sent to each
node should be computed dynamically. It is approx-
imately equal, of course, to the total number of col-
umns divided by the number of slave nodes available.

Figure 2 shows the time taken to perform a 24-h
standard simulation of the South Coast Air Basin of
California using the CIT model. The points plotted
correspond to 2,4,8,16,32,64,128 and 256 nodes of
the Intel Delta. The distance between the ideal and
measured curves in Fig. 2 represents the time spent in
the communication between the master node and the
slave nodes, as well as idle time among the slave
nodes. Figure 2 shows that the time continues to
decrease as more and more nodes are used. This is the
expected behavior in the small number of processors
regime. Sometimes, however, an increase in time ac-
tually occurs when the number of processors is in-
creased beyond a certain point. This phenomenon, if

1684

D. DaBpuB and J. H. SEINFELD

100000
g 10000
g
E
1000 L

©—-® Measured time
®—48 |deal time

1 10

100 1000

Number of Processors

Fig. 2. Execution time as a function of number of nodes when parallelizing

the chemistry loop of the model. Ideal time presented is calculated from

Amdahl’s law. Time reported corresponds to a 24-h standard simulation of
the South Coast Air Basin.

present, occurs at the high number of processors re-
gime (i.e. the massively parallel regime). The reason is
that the master node has so many slaves to manage
that the overall productivity of the group as a whole
decreases. Using 256 nodes, the speed-up obtained by
parallelizing the %, operator is 13.9. That is, a 24-h
simulation takes 46 min to complete.

4.3. Vertical transport

In the CIT model vertical transport is part of the
%., operator. In the chemistry implementations in
parallel the entire air column was sent to the nodes to
be integrated. Therefore, by sending the rest of the
data needed, such as the z component of the advective
flow, one can perform the vertical transport computa-
tions with no further complications. In the same way,
deposition velocity calculations and other computa-
tions included inside the “chemistry” loop of the code
should be performed in parallel.

If the chemistry operator is not coupled with the
vertical transport, parallel performance is not greatly
affected. Usually the percentage of the time spent in
computing vertical transport is quite small. Parti-
cularly, in the CIT model it is less than 3% and is
included in the “other” category. According to Am-
dahl’s law, that 3% of code would, however, be crucial
if most of the rest of the code could be implemented in
parallel.

4.4. Horizontal transport

When the chemistry integration has been imple-
mented successfully, as well as other computations
such as the vertical transport and deposition, signific-
ant speed-ups are obtained. At this point, any imple-
mentation of other sections of the code will have
a great impact on increasing speed-ups in accordance
with Amdahl’s law. The effect of implementing in

parallel a constant small percentage of the code is
proportional to the percentage of the code already
parallelized. In particular, the CIT model spends
54% of its time performing the horizontal transport
computations. This 5.4% would increase the speed-up
of the code if implemented in parallel, and, the value
of the increased speed-up would be proportional to
the percentage of the code already parallelized as
reflected in Amdahl’s law.

The implementation of transport computations re-
quires communication among the slave nodes. The
communication needed for optimal performance is
dependent on the numerical scheme used. The scheme
determines the number of neighboring grids used to
compute the values of the species concentration to
advance the next transport step. An optimal perform-
ance implementation of horizontal transport can use
the standard technique known as extended arrays.
Extended array techniques consist of having the
nodes send the values of species concentrations con-
tained in the boundaries of their domains. The nodes
would also receive the values of the concentration
boundaries of their neighboring nodes.

The horizontal transport operator in the CIT
mode! is decomposed into two separate operators %,
and %,. Our implementation of the transport com-
putations did not make use of extended arrays. Thus,
optimal performance was sacrificed for the sake of
maintaining modularity.

We can illustrate the implementation of the trans-
port computations with the approach we have used.
For the %, operator, the node containing the left-
most row of the computational grid is the one dedi-
cated to perform the transport computations for that
particular row. The assigned node requests data from
the other nodes that contain data of that particular
row. Note that data might be needed from more than

Air quality modeling on massively parallel computers

one node. The other nodes send the data to the as-
signed node. All the data required to perform trans-
port computations are now in the assigned node. At
this point, any algorithm can be used to compute the
concentrations at the next transport step. All the
communications within rows, as well as the transport
computations, are carried out simultaneously at all
the assigned nodes. Finally, all the assigned nodes
must send the computed concentrations to the appro-
priate neighboring nodes.

The choice of the node as the place where com-
putations are to be performed is arbitrary. For this
idea to be implemented successfully, a unique message
identifier must be set for each message going back and
forth to the assigned node. This method, however, can
be taken a step further. For instance, instead of having
only one assigned node to compute the next transport
step of all the species in all 5 vertical layers, one can
assign 5 nodes to compute simultancously all the
species on each layer.

It is now clear that a one-dimensional domain
decomposition helps to reduce the message passing
when performing transport computations in the x-
direction and using a small number of nodes. The
y-direction transport is not affected. In comparison,
the use of a two-dimensional decomposition results in
a greater number of messages passed in the x- and
y-directions. This is the case even when computing
with a small number of slave nodes.

The transport in the y-direction was implemented
using the same basic idea. All the y-column transport
computations are to be performed at an arbitrarily
assigned node. After receiving data from other col-
umns, and performing the y-transport computations,
the assigned node sends back the vector of species
concentrations to the corresponding nodes. Even

1685

though this approach is not the optimal implementa-
tion to perform the horizontal transport computa-
tions, it is independent of the numerical scheme used.

The implementation of the horizontal transport in
parallel increases the percentage of parallelized code
by 5.4%. Since a significant percentage of the code has
been already implemented in parallel, the speed-up
increase is quite noticeable. Figure 3 shows that com-
puting time continues to decrease as the number of
nodes increases up to 256. Furthermore, it shows that
the distance between the measured time and the ideal
time is quite dependent on the number of nodes.
Figure 3 shows a greater discrepancy between the
measured times and ideal times when the chemistry
and transport are both performed in parallel than
Fig. 2 when only chemistry is parallelized. The reason
is that the current implementation of horizontal trans-
port sacrifices optimal transport implementation to
gain modularity in the code. However, Fig. 4 shows
that the parallel implementation of the transport
makes the code run faster as long as 8 or more nodes
are used. The time saved is proportional to the num-
ber of nodes used, as expected. When using only
4 nodes, the parallel transport implementation actual-
ly runs slower than when only the chemistry is imple-
mented in parallel, a direct consequence of the over-
head of intensive message passing that occurs to per-
form the transport calculations. As more nodes be-
come available, the increase in performance over-
shadows such overhead.

When implementing the transport in parallel
a greater speed-up is obtained than when only the
chemistry part of the code is parallelized. The best
speed-up measured is 28.47 using 256 nodes. That is,
a 24-h run takes less than 23 min to compute. Figure
5 shows the computational time of the CIT model on

100000
©—@ Measured time
B ldeal time
LN
10000 + 1
Y
£
-
1000 | 7
L
-
100 : .
1 10 100 1000
Number of Processors

Fig. 3. Execution time as a function of number of nodes when parallelizing

the chemistry loop and the transport equation solver of the model. Ideal

time presented is calculated from Amdahl’s law. Time reported corres-
ponds to a 24-h standard simulation of the South Coast Air Basin.

1686

D. DaBpuB and J. H. SEINFELD

100000
F)
8
o 10000 |
£
£
1000 :

B—8 Chemistry and Transport in parallel
@@ Chemistry in parallel

1 10

100 1000

Number of Processors

Fig. 4. Execution time as a function of number of nodes. One set of data
corresponds to the parallelization of the chemistry loop only. The other
data set corresponds to the model having the chemistry loop and the
transport equation solver implemented in parallel. Time reported corres-
ponds to a 24-h standard simulation of the South Coast Air Basin.

50.0

40.0

Time (hr)

100

00
&

S Q
S 659_‘_?0

& & &

Ny
K
N

Q
@ f

Fig. 5. Execution time for different computing plat-
forms. Time reported corresponds to a 3-day simulation
of the South Coast Air Basin. Delta result corresponds to
the model having the chemistry loop and the transport
equation solver implemented in parallel on the Intel
Touchstone Delta using 256 processors.

different systems. The times reported correspond to
simulating a 3-day air pollution episode in the South
Coast Air Basin.

5. CONCLUSIONS

This work presents the implementation of the CIT
photochemical air quality model on the Intel Touch-

stone Delta. It has been found that the use of MIMD
computer architectures provides an excellent environ-
ment for air quality models.

The implementation of the chemistry section of the
code involves a simple host to node communication
pattern. The parallel implementation of the chemistry
is independent of the numerical scheme and the
photochemical mechanism used. When the chemistry
portion of the CIT model is parallelized, a speed-up
factor of 13.9 is achieved using 256 nodes.

Implementation of the horizontal transport section
of the code requires more careful programming than
for the chemistry since it inherently contains com-
munication among nodes. The parallel implementa-
tion of the horizontal transport is dependent on the
order of the numerical scheme, if extended array tech-
niques are used. To obtain independence and keep the
model modular with respect to the transport solver,
a small performance price must be paid. When the
horizontal transport portion of the CIT model is
parallelized in addition to the chemistry, a speed-up
factor of 28.47 is achieved using 256 nodes.

Parallel computing is a powerful tool for air pollu-
tion modeling. By significantly reducing the comput-
ing time, it allows more detailed treatment of the
dynamics of the atmosphere and it provides the nu-
merical power necessary to meet the needs of future
generation AQMs.

Acknowledgements—This work was supported in part by
a grant from the IBM Environmental Research Program.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the IBM corporation. This
research was performed in part using the Intel Delta System
operated by Caltech on behalf of the Concurrent Supercom-
puting Consortium.

Air quality modeling on massively parallel computers

REFERENCES

Carmichael G. R., Peters L. K. and Kitada T. (1986) A sec-
ond generation model for regional-scale transport/chem-
istry/deposition. Atmospheric Environment 20, 173-188.

Carmichael G. R., Cohen D. M., Cho S. Y. and Oguztuzun
M. H. (1989) Coupled transport—chemistry calculations on
the massively parallel processor computer. Comput. Ch. E.
13, 1065-1073.

Chang J. S, Brost R. A, Isaksen I. S. A, Madronich S.,
Middleton P., Stockwell W. R. and Walcek C. J. (1987)
A three-dimensional eulerian acid deposition model: phys-
ical concepts and formulation. J. geophys. Res. 92,
14,681-14,700.

Chock D. P. (1985) A comparison of numerical methods for
solving the advection equation—II. Atmospheric Environ-
ment 19, 571-586.

Chock D. P. (1991) A comparison of numerical methods for
solving the advection equation—IIL. Atmospheric Environ-
ment 25A, 853-871.

Chock D. P. and Dunker A. M. (1983) A comparison of
numerical methods for solving the advection equation.
Atmospheric Environment 17, 11-24.

Forester C. K. (1977) Higher order monotonic convective
difference schemes. J. comp. Phys. 23, 1-22.

Fox G., Johnson M., Lyzenga G., Otto S., Salmon J. and
Walker D. (1988) Solving Problems on Concurrent Proces-
sors Vol. I. Prentice Hall, New Jersey.

Harley R. A, Russell A. G., McRae G. J, Cass G. R. and
Seinfeld J. H. (1993) Photochemical modeling of the
Southern California air quality study. Envir. Sci. Technol.
27, 378-388.

Hov 9., Zlatev Z., Berkowicz R., Eliassen A. and Prahm
L. P.(1989) Comparison of numerical techniques for use in
air pollution models with nonlinear chemical reactions.
Atmospheric Environment 23, 967-983.

Intel Corporation (1991) A Touchstone DELTA system de-
scription, Intel Supercomputer Systems Division, 26 Feb.,
1991.

Lamb R. G. (1982) regional scale model of photochemical air
pollution, part 1: theoretical formulation. U.S. Environ-

1687

mental Protection Agency, Research Triangle Park, N.C.

Levin E. (1989) Grand Challenges to computational science.
Comm. ACM. 32, 1456-1457.

Lurmann F. W., Carter W. P. L. and Coyner L. A. (1987)
A surrogate species chemical reaction mechanism for ur-
ban-scale air quality simulation models. EPA No. 68-
02-4104.

McRae G. J, Goodin W. R. and Seinfeld J. H. (1982a)
Numerical solution of the atmospheric diffusion equation
for chemically reactive flows. J. comp. Phys. 45, 1-42.

McRae G. J., Goodin W. R. and Seinfeld J. H. (1982b)
Development of a second-generation mathematical model
for urban air pollution. I. Model formulation. Atmospheric
Environment 16, 679—696.

Odman M. T., Kumar N. and Russell A. G. (1992) A com-
parison of fast chemical kinetic solvers for air-quality
modeling. Atmospheric Environment 26, 1783-1789.

Pai P. and Tsang T. T. H. (1992) Paralle] computations of
turbulent-diffusion in convective boundary-layers on
shared-memory machines. Atmospheric Environment 26A,
2425-2435.

Pilinis C. and Seinfeld J. H. (1988) Development and evalu-
ation of an eulerian photochemical gas—aerosol model.
Atmospheric Environment 22, 1985-2001.

Rood R. B. (1987) Numerical advection algorithms and their
role in atmospheric transport and chemistry models. Rev.
Geophys. 25, 71-100.

Schere K. L. and Wayland P. K. (1991) EPA regional
oxidant model (ROM 2.0): evaluation on 1980 NEROS
databases. U.S. Environmental Protection Agency, Re-
search Triangle Park, N.C.

Shin W. C. and Carmichael G. R. (1992) Comprehensive air
pollution modeling on a multiprocessor system. Comput.
Ch. E. 16, 805-815.

Venkatram A., Karamchandani P. K. and Misra P. K. (1988)
Testing a comprehensive acid deposition model. Atmo-
spheric Environment 22, 737-747.

Young T. R. and Boris J. P. (1977) A numerical technique for
solving stiff ordinary differential equations associated with
the chemical kinetics of reactive-flow problems. J. phys.
Chem. 81, 2424-2427.

