S

Ty PARALLEL
£ COMPUTING
ELSEVIER Parallel Computing 23 (1997) 2187-2200

Performance and portability of an air quality model

Donald Dabdub **, Rajit Manohar °

* Department of Mechanical Engineering, University of California at Irvine, Irvine, CA 92697, USA
b Depariment of Computer Science, California Institute of Technology, Pasadena, CA 91125, USA

Received 16 January 1997; revised 12 June 1997

Abstract

We present a portable, parallel implementation of an urban air quality model. The parallel
model runs on the Intel Delta, Intel Paragon, IBM SP2, and Cray T3D, using a variety of standard
communication libraries. We analyze the performance of the air quality model on these platforms
based on a model derived from the paraliel communication behavior and sequential execution time
of the air quality model. We predict the performance of the next generation air quality models
based on this analysis. © 1997 Elsevier Science B.V.

Keywords: Regional air-quality modeling; Parallel computing performance; Communication;
Software portability

1. Introduction

Air quality models (AQMs) predict the spatial and temporal distribution of gaseous
species concentrations in the atmosphere. Pollution dynamics is governed by a rich set
of physical and chemical phenomena including advection, turbulent diffusion, chemical
transformations, emissions, and deposition. AQMs are mainly used for the evaluation of
emission control strategies and planning for the control of air pollution episodes.

The California Institute of Technology (CIT) photochemical model is one such air
quality model. It is used to predict the pollution dynamics in the South Coast Air Basin
of California. It has also been modified to model pollution in South Korea, Mexico, and
a few regions of the US.

Environmental modeling is a grand challenge application [17]. In particular, it has
been estimated that a 100,000-fold increase in computational requirements will be

" Corresponding author.

0167-8191,/97 /$17.00 © 1997 Elsevier Science B.V. All rights reserved.
PII S0167-8191(97)00108-7

2188 D. Dabdub, R. Manchar / Puarallel Computing 23 (1997) 2187--2200

necessary to incorporate a comprehensive set of atmospheric physics and chemistry into
existing air quality models [13].

Most grand challenge applications are limited by the speed of modern supercomput-
ers. To keep the computation tractable, the problem being solved is simplified by
omitting certain physical phenomena, or by using less accurate numerical techniques. As
more powerful parallel machines become available, computational scientists can incor-
porate more complex physical phenomena into existing applications. Therefore, they
need to know the limits of modern machines, and the effects of incorporating new
physics and chemistry to existing models on the run-time of the model.

The main objective of this work is to develop a performance model to predict the
execution time of a program as a function of the number of processors. The parameters
used in the model fall into two categories: machine-dependent or application-dependent.
The machine dependent parameters describe the interconnection network and processors.
The application dependent parameters describe the inherent parallelism in the program,
All the application related parameters can be measured using the sequential version of
the application.

We report performance results on different distributed-memory MIMD machines. In
particular, the following machines were used to study performance and portability: Intel
Touchstone Delta, Intel Paragon XP /S L38, IBM SP2, and Cray T3D.

The air quality model is described in Section 2. Section 3 contains a description of
the sequential implementation of the CIT model. Section 4 summarizes the paralleliza-
tion strategy and describes the interface layer that permits portability. Section 5 derives
the performance model used to predict execution time on various architectures. Results
of the performance model are compared with actual paralle] profiles of the CIT model.
Section 6 presents the results of the portable execution, and the issue of load-balancing
is discussed. Section 7 discusses some of the. requirements of the next generation of air
quality models and predicts the computational behavior of the next generation air quality
models on supercomputers that are expected to be available in the short term future.

2. The CIT air quality model

The CIT air quality model is a three-dimensional Eulerian urban photochemical
model designed to study the dynamics of pollutant transformation and transport in the
atmosphere. The underlying equation used in Eulerian air quality models is the atmo-
spheric diffusion equation:

dc,
—a[—'+u~ Ve, = V- (K- Ve,) +R(¢,T) + Si(x,1), (1)

where ¢; denotes the elements of the concentration vector ¢, ¢ is time, x = (x,y,2) is
position, u == (a,v,w) is the advective flow field, K is the eddy diffusivity tensor, R, is
the chemical production of species i, T is the temperature, and §; is the source rate of /.

The CIT model uses a 80 X 30 rectangular grid in the xy-plane. The computational
domain corresponds to an irregular region within this grid composed of 994 columns.
Each column corresponds to a 5 km X 5 km region in the xy-plane and extends 1100 m

D. Dabdub, R. Manohar / Parallel Computing 23 (1997) 2187-2200 2189

in height. The columns are discretized into 5 cells in the z direction. Each cell contains
35 gas-phase chemical species. The chemical mechanism contains 106 reactions [19].
Harley et al. provide a detailed description of the CIT model [15].

The inherent time scales of the chemical and physical processes of Eq. (1) can vary
by several orders of magnitude. Such variations pose one of the major challenges in
constructing numerical methods for AQMs. Modularity requirements and computational
constraints dictate that the processes be split according to their inherent time scales.

Historically, the numerical solution of the atmospheric equation in AQMs has been
determined by the most current computational technologies available. With the increas-
ing computational requirements, operator splitting methods have been developed and
refined for the solution of AQMs [20]. Splitting methods provide a numerical approach
that is both economical and modular.

The basic idea of the splitting process is the sequential use of operators, %, that
govern the different phenomena. In the CIT AQM, the horizontal transport operator is
decomposed into two separate operators, £, and .#,, describing the transport in the x
and v directions, respectively. In addition, the chemistry and vertical transport are
combined into a single operator %, .

The solution of the atmospheric diffusion equation in the operator splitting frame-
work is obtained from the following sequence:

) - . 2 .
cH—_.}I ZZ‘A/“%‘.A',.(/L.;AI,.(/\._\L(/_\A[C’. (2)

The numerical solution of the horizontal transport operator has been the focus of
research of several sub-branches of computational fluid dynamics. In AQMs, the
accuracy of the solution of horizontal transport is critical in the presence on nonlinear
chemistry [7-10].

The chemistry operator consists of the integration of a system of coupled, nonlinear
ordinary differential equations. The development of general purpose integrators for
differential equations has received considerable attention [4]. Nevertheless, tailored
algorithms have been developed for systems of equations that originate from chemical
kinetics {11,24]. In particular, the CIT model uses a hybrid integration algorithm based
on a predictor-multi-corrector scheme [28]. The hybrid method uses the fixed space
discretization described previously. The reason for this is twofold: first, to keep the
problem computationally tractable; second, because of the lack of emissions data for
finer space discretization. The time discretization uses a standard adaptive relative error
control techniques. Typically, the finest time scales occur at dusk and dawn, when the
system presents the greatest stiffness due to the influence of sunlight on chemical
kinetics.

3. Sequential profile

The sequential execution time of the CIT air quality model (AQM) in a typical 24 h
simulation of the South Coast Air Basin of California is composed of three major parts.
The chemistry and vertical transport computations take 87% of the total time. The
computation involves an adaptive time-step integration, and therefore the time taken for

2190 D. Dabdub. R. Manohar / Parallel Compuiing 23 (1997) 2187-2200
Table 1
Performance of the sequential CIT AQM on various machines
Machine Configuration Time (s)
Touchstone 16 MB memory; 4 kB inst. cache 31529
Delta 8 kB data cache
40 MHz Intel i860 processor
Intel 32 MB memory; 16 kB inst. cache 30468
Paragon XP/S 16 kB data cache
50 MHz Intel i860 XP processor
SG1 64 MB memory; 16 kB inst. cache 7561
Indy 16 kB data cache; 512 kB level 2 cache
133 MHz R4600 processor
Sun Sparc 20 32 MB memory; 20 kB inst. cache 7442
16 kB data cache
50 MHz SuperSPARC processor
SGI 256 MB two way interleaved memory 5719
Indy 16 kB inst. cache; 16 kB data cache
1 MB level 2 cache
100 MHz R4400 processor
IBM RISC 580 32 MB memory; 32 kB inst. cache 4684
64 kB data cache
62 MHz POWER processor
IBM RISC 370 32 MB memory; 32 kB inst. cache 4607
32 kB data cache
62 MHz POWER processor
SGI 288 MB memory; 16 kB inst. cache 3813
16 kB data cache; | MB level 2 cache
150 MHz R4400 processor
IBM RISC 390 32 MB memory; 32 kB inst. cache 3535
32 kB data cache; IMB level 2 cache
67 MHz POWER2 processor
SGi 512 MB two way interleaved memory 2823
Power Onyx 16 kB inst. cache: 16 kB data cache
4 MB level 2 cache
75 MHz R8000 processor
DEC 128 MB memory; 16 kB inst. cache 2502
AlphaStation 600 16 kB data cache; 96 kB level 2 cache
2 MB level 3 cache
266 MHz Alpha 21164 processor
Intel 64 MB memory; 8 kB inst. cache 2070

Pentium Pro

8 kB data cache: 256 kB level 2 cache
200 MHz Intel Pentium Pro processor

D. Dabdub. R. Manohar / Parallel Computing 23 (1997) 2187-2200 2191

the chemistry computation varies across different regions of the computational domain.
The transport computation consumes 5% of the total time. Reading the input data files
and writing the output requires 7.5% of the total time. The vector of the concentration of
all species at every point in the computational domain is written to disk after each hour
of simulation time.

The sequential model was executed on a number of different platforms of varying
configuration. Table 1 contains a summary of the total time taken by the sequential
version of the CIT AQM. The execution time for processors with comparable architec-
tures is proportional to the clock rate of the processor. Note that the CIT AQM uses only
4.5 megabytes of memory at any given time, even though the input data files are
substantially larger. Therefore, the performance of the code will not improve by
increasing the amount of physical memory in the system. It was found that the
FORTRAN 77 version of the AQM ran approximately 25% faster than its C equivalent
on all the architectures shown. We use the FORTRAN 77 version of the AQM for all the
reported timings.

4. Parallel implementation

Table 2 shows the target parallel machines. Since each of these target architectures is
a MIMD machine connected by a message-passing network, the parallel implementation
of the AQM is targeted at message-passing architectures. The Intel Delta is the
predecessor of the Paragon; a complete description can be found in [16].

4.1. Parallelization strategy

The CIT AQM is parallelized using a ‘master-worker’ strategy, The ‘master’
distributes the work to the available processors and is responsible for reading and
writing files. Reading data for the next hour of simulation time is overlapped with the
computation for the current time step, thus reducing the 1/0 time to the time taken to
read the input data for the first hour of the simulation.

An examination of the sequential profile shows that the bulk of the time taken by the
CIT AQM is spent in the chemistry computation. Therefore, a good paralle! implementa-
tion of the AQM must be able to effectively distribute the work done in the chemistry
computation over a parallel machine. To determine how the computation can be
parallelized, we analyze the data-dependencies in the computation itself.

Table 2

Parallel architectures used

Machine Processing node Network Communication library
Intel Delta 40 MHz i860 2D mesh NX

Intel Paragon 50 MHz i860 XP 2D mesh NX

Cray T3D 150 MHz Alpha 21064 3D torus PVM

IBM Sp2 62 MHz POWER Omega switch p4

2192 D. Dabdub, R. Manohar / Parallel Computing 23 (1997) 2187-2200

Updating the concentration vector in the chemistry phase at a particular column in the
grid can be performed with local information. This part of the computation is paral-
lelized in a straightforward fashion by distributing the different columns among the
available processors.

In the general case, the x () transport solver needs the value of an entire strip in the
x (y) direction of the grid to compute the new concentration at any point in the strip.
The horizontal transport operators for the five vertical layers in the computational
domain have no data-dependencies. The CIT AQM serves as a testbed for different
numerical techniques for solving the transport equation. The aforementioned data-de-
pendencies were assumed to permit easy replacement of the transport solver. For
example, knowing that the transport solver uses finite-difference techniques, one could
optimize the communication in a parallel implementation; such solver-specific optimiza-
tions were not performed. The ., operator is parallelized by distributing the concentra-
tion vector by rows among the available processors. Rows in different vertical layers
might be distributed to different workers in this process. The &, operator is parallelized
in a similar fashion.

The concentration vector is redistributed between the various phases of the computa-
tion. Since each processor has full information about the position of every element of the
concentration vector, every processor can send sections of the vector to the appropriate
processor for the next phase in the computation; the receiving processor reassembles the
vector before proceeding. A detailed description of this parallelization strategy is given
by Dabdub and Seinfeld [12].

4.2. Portability

One of the problems with using parallel machines is that vendor-supplied communi-
cation primitives have not been standardized. A parallel program can use vendor-sup-
plied subroutine libraries that take full advantage of the underlying hardware. However,
using system-dependent libraries affects portability.

An alternative approach is to use communication libraries that have system dependent
implementations but provide a uniform interface that is system independent. Commonly
used libraries that fall into this category include PVM, MPI, and p4 [3,22,25]. Although
using these libraries provides a degree of portability, they were not available on all
platforms. In addition, the performance of the primitives provided by these libraries on
the parallel machines varies considerably.

The approach used was to develop an interface that was based on the common
features of the system-independent libraries and implement it using a particular library
on a given system. Since all the libraries provided primitives for sending and receiving
arrays of bytes, blocking sends and receives were used as the basic primitives for
communication. It was assumed that each process in a computation is assigned a unique
identifier from O to N — 1, where N is the number of processes in the computation, and
messages can be sent by any process to any other process. This model is similar to the
basic model used by p4, MPL, PVM, and Intel’s NX library. Each interface function can
be implemented using one or two function calls in the underlying parallel communica-
tion library. In fact, the implementation of the communication primitives usually

D. Dabdub, R. Manohar / Parallel Computing 23 (1997) 21872200 2193

consisted of calling a library function with a permuted version of the arguments! The
result was a clean interface to a parallel machine with very little overhead beyond that
introduced by the underlying library. This interface layer can be used to write other
parallel applications as well. The interface permitted us to port the model not only to
different parallel machines, but also to use different parallel libraries with minimal
effort. Table 2 shows the communication libraries used on various parallel machines.

The air quality model was written to be independent of the number of available
processors so that it could be run not only on different machines, but also on the same
machine when other users were using part of the machine. Finally, the use of a parallel
file system was avoided since the interfaces to parallel file systems are highly system-
dependent.

5. Performance analysis

The performance of a parallel program on a MIMD machine depends on the
architectural details of the machine. It is assumed that the parallel machine consists of a
number of computational nodes that communicate with one another by the exchange of
messages. In this section we develop a performance model for the parallel implementa-
tion of the CIT AQM using techniques similar to those described in [14].

Each processor in the parallel machine performs part of the computation required by
the AQM. Since the processors operate in parallel, the total time taken by the
computation is the maximum of the times taken by the individual processors.

The time taken by a single processor can be logically divided into three parts
corresponding to what the processor may be doing at any given instant:

Teompue: The time spent by processor i for computation.

The time spent by processor i for communication with other processors

because of data-dependencies in the computation.

Tigre: The time spent by processor i when waiting for information from another
processor in the form of a message.

TComm:

The computation time T¢ . 18 determined by the speed of the processing node i. The
communication time T ., is determined by the speed of the interconnection network.
The idle time T3, quantifies the load imbalance of the program. The time taken by a
single processor i is the sum of these three components.

The computation time is estimated by executing the sequential CIT model on the
processing node. The total time taken by the sequential program, T, consists of the
time taken for computation, T¢opn,. (92.5%), and of the time taken for reading and
writing files, T,, (7.5%). A profile of the sequential code serves as the basis for
determining this time. Table 1 provides a list of T, for a variety of architectures. The
parallel implementation of the CIT AQM uses a special host node that performs all of
the 1/0 operations on behalf of the worker nodes. Given N worker nodes in the

computation, the computation time is estimated to be:

. T
Tompuie = 92.5% X —2. (3)

compute

2194 D. Dabdub, R. Manohar / Parallel Computing 23 (1997) 21872200

The idle time is a measure of the amount of time that was ‘wasted’ during the
computation. When the computational work is not evenly divided among the processors,
this time can be large. In the performance analysis the idle time is neglected since
Tite < Toompute T Tcomm- As it will be shown subsequently, ignoring Ty, is a reasonable
assumption.

When a message is sent from one processor to another, there is a constant overhead
in time, the latency L, that is incurred because the first data item in the message must
travel a fixed distance to the remote processor. Each additional data item is delivered to
the remote processor at a rate determined by the interconnection network bandwidth BW
(measured in bytes per second). The communication time is therefore estimated by
counting the number of messages that are sent and the size of those messages. The
observed bandwidth of an interconnection network depends on the length of the
messages being sent. Since most of the messages sent during the computation were
approximately 1000 bytes long, the bandwidth of interest is the bandwidth of the
network for messages that are approximately 1000 bytes in length.

The communication patterns of the CIT model are independent of the underlying
interconnect topology, which is partly why the model is portable. Two processors that
need to communicate may not be directly connected by a dedicated communication link
in the underlying hardware. The result is that two messages that are logically unrelated
may be ordered by the underlying hardware, which would cause the communication to
be slower than expected. It is assumed that this effect is negligible for the purposes of
the performance model.

The latency overhead is encountered for each message sent. For simplicity, it is
assumed that the latency for communicating between processors is a constant, indepen-
dent of the physical location of the processors. The communication time for a particular
processor i is given by:
number of bytes sent

BW ’ (4)

where the number of messages and the number of bytes sent are calculated for a single
worker node, not the entire computation. Both of these quantities depend on the number
of processors. The time can be written in more detail as follows:

‘ bN +c+d/N

! -—

Tcomm =L xXaN + -———————BW , (5)
where a, b, ¢, and d are determined by the sizes of the arrays that are part of the CIT
AQM data. The number of messages that are sent by a single processor increases
linearly with the number of workers, corresponding to the term aN. The constant b
corresponds to data that are replicated at each worker; ¢ corresponds to data that are
evenly divided among all the workers; d corresponds to data that is evenly divided
which is exchanged by processors in parallel.

The total time taken by a worker is given by the following relation:

bN +c+d/N
BW '

T! =L X (number of messages) +

comm

T=925%X — +LXaN + (6)

2195

D. Dabdub, R. Manohar / Parallel Computing 23 (1997) 2187-2200

WOV LID 2y} 10) 2w Ydoa-[iem paropaid snsioa jenoy (p) o1 () ‘[81

$105s3201d jO JoqunN

0001 00}

ot 3

T 0oL

L 1 0004
-+ Pajaipald TdS WAl
—o— palnsealy 2dS WAl
L L 0000
S10S52201d JO JaqUWNN
000} ool oL I
T T 00l
t 4 ooot
E 4 00001
-+ pajoIpald uobeled [eluf
—e— painseajy uobeied jaju|
+ . 00000}

[oas] awyj

[oas] aun)

0001

§10SS320.4 JO JaquIiniN

00t

ol

—-+- PIIPAId ALl Aeld

— paInseay ael Aei

M

0001

$10S$3204d JO JaqUINN

00}

ol

T

—-+- pajoIpaId BJ2Q auoisyonoy [y
—o painseayy B}jeg auolSYINOo] |2JU|

T

00}

0001

00001

000001

001

00cL

00001

000001

[o9s] swyy

)

foas] aunt

2196 D. Dabdub, R. Manohar / Parallel Computing 23 (1997) 2187-2200

All of the parameters of this model can be determined without executing the parallel
version of the CIT AQM. The sequential execution time is measured by running the
sequential version of the CIT AQM. The parameters a, b, ¢, and d are obtained by
textual inspection of the parallel program, since the entire communication behavior is
known a priori.

This performance model agrees well with observed behavior. Fig. 1 shows both the
observed and predicted times for the CIT model on the Intel Delta, Intel Paragon, Cray
T3D, and IBM SP2 respectively. For small numbers of processors, the CIT model scales
well. As the number of processors increases, the overhead of communication outweighs
the advantages of distributing the computation over a larger number of worker nodes.

6. Results and discussion

Fig. 2 shows the total time taken by the CIT air quality model during a typical 24 h
simulation of the South Coast Air Basin of California on each of the architectures shown
in Table 2. The measured times correspond to wallclock time and include the time for
process creation. The best performance is obtained when using 64 processors of the Cray
T3D. Under this configuration, the entire model runs in 341 s. As predicted by the
performance model, the communication overhead overshadows the advantages of dis-
tributing the computation as the renumber of processors increases.

Fig. 3 shows the predicted computation and communication times on an IBM SP2.
Observe that in the regime of small numbers of processors, the computation time
dominates the communication time. As the number of processors increases, the commu-
nication time initially decreases because each individual node sends a smaller amount of
data and the nodes communicate simultaneously. Eventually the cost of distributing the
replicated data overshadows the advantages of distributing the computation.

| T intel Delta ~— |
N Intel Paragon -+
Cray T3D o
IBM SP2 -«
10000 - ‘*\ 1
= so00f. -]
g e]
.ﬂ F ‘E. -
v .
£
[3 x 1
1000 -]
L -]
500 - o o o]
. . : . A S .
1 2 4 8 16 32 64 128 256 512

Number of Processors

Fig. 2. Performance of the parallel CIT AQM on various machines.

D. Dabdub, R. Manohar / Parallel Computing 23 (1997) 2187-2200 2197

10000 T
Measured load imbalance —
Predicted computation time ------
Predicted communication time -
1000 | 4
z -
D
2,
©
E
= e
100 -
10 L .
1 10 100

Number of Processors

Fig. 3. Measured load imbalance, predicted cormputation and predicted communication times on an IBM SP2.

One of the problems with any parallel implementation of the CIT AQM is that the
chemistry computation uses adaptive integration to solve the chemical kinetic equations.
As a result, the time taken for this part of the computation can vary considerably
between different vertical columns in the computational domain.

If the chemistry operator was perfectly load-balanced, the time taken by the parallel
chemistry computation would be the time taken by the sequential chemistry computation
divided by the number of workers. However, in reality, the time taken by the different
workers will vary, and the actual time taken by the parallel chemistry computation is
given by the time taken by the slowest worker. The load imbalance is the ditference in
these two times, and varies with the number of workers.

Fig. 3 shows the load imbalance as a function of the number of processors. As the
number of processors increases, the load imbalance decreases. To reduce the imbalance
would entail dynamically load-balancing the computation. Introducing dynamic load-
balancing would significantly complicate the implementation and would cause ditferent
processors to send an unequal number of messages between the phases in the computa-
tion, thus unbalancing the communication phase.

We are interested in improving the accuracy of the CIT AQM, and our next step will
be to incorporate the aerosol phase into the parallel model. Fig. 3 shows that beyond 25
processors the load imbalance drops to under 30 s on an IBM SP2. Since this is not a
large amount of real time, the load-balancing issue has been postponed until the aerosol
phase is incorporated into the air quality model. Including the aerosol phase will change
the load imbalance as well, and as of now it is unclear whether load-balancing the new
model will be worthwhile.

7. The future of parallel air quality models

Historically, the state-of-the-art for AQMs has been determined by the computational
technologies,available. Box models were one of the first approaches to model air quality.

2198 D. Dabdub, R. Manohar / Parallel Computing 23 (1997) 2187-2200

They consisted, as their name implies, of a single box or cell that encompassed the
entire region to be modeled. The main use of box models was to predict the temporal
regional average of pollutant concentrations. Most of the computations carried out by
box models consist of the solution of chemical reactions of pollutants in the cell. To
study air quality on a more detailed scale, trajectory models were developed.

Trajectory models are based on the solution of the atmospheric reaction diffusion
equation (Eq. (1)) using a Lagrangian coordinate system [18]. Trajectory models are
approximately 3—5 times more computationally intensive than box models. To model the
spatial and temporal variations of pollutant dynamics over an entire region, grid models
were developed.

Grid models are based on the solution of the atmospheric reaction diffusion equation
using an Eulerian coordinate system. The region to be modeled is similar to that of the
box model. However, the space is subdivided into a three-dimensional array of grid
cells. Grid models are approximately 5000 times more computationally intensive than
box models.

Eulerian gas-phase air quality models started to evolve in the early 1980s to
incorporate gas/aerosol equilibrium [2]. Pilinis and Seinfeld incorporated the aerosol
dynamics into a gas-phase three-dimensional comprehensive urban airshed model [23].
The model was able to predict size-dependent aerosol concentration of particles in the
South Coast Air Basin of California. This effort tripled the computational demands
imposed by the model.

The first generation of aerosol models assumed thermodynamic equilibrium between
the gas and the aerosol phases for the volatile compounds. Experimental measurements
have reported departures from equilibrium between gas and aerosol phases of the
volatile compounds {1,26]. Furthermore, theoretical studies by Meng and Seinfeld have
shown that the equilibrium assumption cannot be established under many conditions
[21]. However, the main reason for adopting the equilibrium assumption is a lack of
computer power. A fully detailed aerosol dynamic calculation requires approximately 50
times the computer time needed to model only the Eulerian gas-phase dynamics. The
next generation of air quality models is expected to incorporate hoth the aerosol and
aqueous phases.

The performance model can predict the behavior of the CIT AQM on machines that
do not exist yet! Incorporation of the aerosol phase is expected to increase the time
taken by the chemistry phase by at least a factor of 50. Our model predicts that, given
the preliminary information available on the machines that will be available in the next
few years, our current implementation of the CIT AQM will scale to about 500
processors on the new parallel machines such as the Intel ASCI Red teraflop machine.
Despite increasing the computational demands, it is expected that the CIT AQM with the
aerosol phase will require about O(10) min of execution time on machines that wilt be
available in the next few years.

8. Conclusion

This paper presents a portable, parallel implementation of the CIT air quality model.
By using a system-independent interface to parallel libraries, the core of the model was

D. Dabdub, R. Manohar / Parallel Computing 23 (1997) 2187-2200 2199

made portable across existing parallel libraries. This permitted the code to be run on a
number of paralle]l machines without modification. The advantage of portability does not
hinder performance. The paper describes a performance model used to predict the
execution time of the code on different current architectures, as well as architectures that
are expected to appear in the near future. To our knowledge, this is the first time that
parallel performance results of air quality models have been presented on different
computing platforms using a single portable implementation.

The research community is currently actively involved in incorporating aerosol and
aqueous phases into existing gas-phase air quality models. Using the performance model
developed here, results indicate that the current portable parallel version of the CIT
model with the aerosol physics will take about 10 min on supercomputers due out in the
short term future.

Acknowledgements

This research was performed in part using the Intel Delta System and the Intel
Paragon System operated by Caltech on behalf of the Concurrent Supercomputing
Consortium. The authors wish to thank the United States Environmental Protection
Agency High Performance Computing and Communication Program who provided
access to the Cray T3D. One of the authors (RM) was supported in part by the Defence
and Advanced Research Projects Agency and monitored by the Office of Army
Research, and in part by a National Semiconductor Corporation graduate fellowship.

References

[1] A.G. Allen, R.M. Harrison, J. Erisman, Field measurements of the dissociation of ammonium nitrate and
ammonium chloride aerosols, Atmospheric Environment 23 (1989) 1591-1599.

[2] M. Bassett. J.H. Seinfeld, Atmospheric equilibrium model of sulfate and nitrate aerosols, Atmospheric
Environment 17 (1983) 2237-2252.

[3] R.M. Butler, E.L.. Lusk, Menitors, messages, and clusters the p4 parallel programming system. Parallel
Computing 20 (1994) 547-564.

[4] G.D. Byrne, A.C. Hindmarsh, Stiff ODE solvers: a review of current and coming attractions, Journal of
Computational Physics 70 (1987) 1-62.

[5] G.R. Carmichael, L.K. Peters, T. Kitada, A second generation model for regional-scale transport /chem-
istry /deposition, Atmospheric Environment 20 (1986) 173-188.

[6] J.S. Chang, R.A. Brost, [.S.A. Isaksen, S. Madronich, P. Middleton, W.R. Stockwell, C.J. Walcek, A
three-dimensional Eulerian acid deposition model: physical concepts and formulation. Journal Geophysi-
cal Research 92 (1987) 14681-14700.

{71 D.P. Chock, A.M. Dunker, A comparison of numerical methods for solving the advection equation,
Atmospheric Environment 17 (1983) 11-24.

[8] D.P. Chock, A comparison of numerical methods for solving the advection equation — 11, Atmospheric
Environment 19 (1985) 571-586.

[9] D.P. Chock, A comparison of numerical methods for solving the advection equation - 11, Atmospheric
Environment 25A (1991) 853-871.

(10] D. Dabdub, J.H. Seinfeld, Numerical advective schemes used in air quality models sequential and parallel
implementation, Atmospheric Environment 28 (1994) 3369-3385.

2200 D. Dabdub, R. Manohar / Parallel Computing 23 (1997) 2187-2200

[11] D. Dabdub, J.H. Seinfeld, Extrapolation techniques used in the solution of siiff ODEs associated with
chemical kinetics of air quality models, Atmospheric Environment 29 (1995) 403-410.

[12] D. Dabdub, J.H. Seinfeld, Parallel computation in atmospheric chemical modeling, Parallel Computing 22
(1996) 111--130.

{13] RL. Dennis, D.W. Byun, J.H. Novak, K.J. Galluppi, C.J. Coats, M.A. Vouk, The next generation of
integrated air quality modeling — EPA’s models-3, Atmospheric Environment 30 (1996) 1925-1938.

[14] 1.T. Foster, Designing and Building Parallel Programs, Addison-Wesley, 1995.

[15] R.A. Harley, A.G. Russell, GJ. McRae, G.R. Cass, J.H. Seinfeld, Photochemical modeling of the
Southern California air quality study, Environmental Science and Technology 27 (1993) 378-388.

[16] Intel Corporation, A Touchstone DELTA system description, Intel Supercomputer Systems Division,
February 1991.

[17] E. Levin, Grand Challenges to computational science, Communications of the ACM 32, 1456—1457.

[18] M.K. Liu, J.H. Seinfeld, On the validity of grid and trajectory models of urban air pollution, Atmospheric
Environment 9 (1975) 555.

{19] F.W. Lurmann, W.P.L. Carter, L.A. Coyner, A surrogate species chemical reaction mechanism for
urban-scale air quality simulation models, Report, EPA No. 6802-4104, 1987.

[20] G.J. McRae, W.R. Goodin, J.H. Seinfeld, Numerical solution of the atmospheric diffusion equation for
chemically reactive flows, Journal of Computational Physics 45 (1982) 1-42.

[21] Z. Meng, I.H. Seinfeld, Time scales to achieve atmospheric gas-aerosol equilibrium for volatile species,
Atmospheric Environment 30 (1996) 2889-2900.

[22] Message Passing Intecface Forum, MPIl: A message-passing interface standard, International Journal of
Supercomputer Applications and High Performance Computing 8 (1994).

{23] C. Pilinis. §.H. Seinfeld, Development and evatuation of an Eulerian photochemical gas—aerosol model.
Atmospheric Environment 22 (1988) 1985-2001.

[24] A. Sandu, J.G. Verwer, M. van Loon, G.R. Carmichael, F.A. Potra, D. Dabdub, J.H. Seinfeld,
Benchmarking stiff ODE solvers for atmospheric chemistry problems [implicit versus explicit, To
appear in: Atmospheric Environment.

[25] V.S. Sunderam, PVM A framework for parallel distributed computing, Concurrency: Practice and
Experience 2 (1990) 315-339.

[26] R.L. Tanner, An ambient experimental study of phase equilibrium in the atmosphere system aerosol H™,
NH,. SO; . NO; ~NH,(g), HNO(g), Atmospheric Environment 16 (1982) 2935-2942,

[27] A. Venkatram, P.K. Karamchandani, P.K. Misra, Testing a comprehensive acid deposition model,
Atmospheric Environment 22 (1988) 737-747.

[28] T.R. Young, J.P. Boris, A numerical technique for solving stiff ordinary differential equations associated
with the chemical kinetics of reactive-flow problems, Journal of Physical Chemistry 81 (1977) 2424-2427.

