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Semi-Lagrangian Flux Scheme for the Solution
of the Aerosol Condensation/Evaporation Equation

Khoi Nguyen and Donald Dabdub
Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, California

A new method is developed to solve the condensation equa-
tion as it relates to air quality models using both semi-Lagrangian
and Lagrangian � uxes to increase resolution and perform accu-
rately under stringent conditions that occur in the atmosphere. The
new method, partitioned � ux integrated semi-Lagrangian method
(PFISLM), can be used with lower-order interpolators and pro-
duces highly accurate results. PFISLM is positive de� nite, peak
retentive, mass conservative, and suppresses oscillations. Research
indicates that the differences between PFISLM and traditional � ux
integrated semi-Lagrangian methods as proposed by Bott (1989)
and Emde (1991) are signi� cant when solving the aerosol conden-
sation/evaporation equation. PFISLM is created to handle speci� c
dif� culties associated with the time and space discretization of the
aerosol operator in air quality models.

INTRODUCTION
Air quality models (AQMs) that include aerosol dynamics

often employ the continuous distribution approach (Pilinis 1990)
to represent aerosols undergoing evaporation and condensation.
The fundamental equation governing the condensation process
for an internally mixed aerosol is derived in Pilinis (1990). The
equation is given as
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where pi , Hi , ¹, p D
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i Hi are the mass
distribution of species i , mass transfer rate of species i , log of
the diameter of the particle, total concentrations, and total mass
transfer rates, respectively, with n being the number of aerosol
compounds.
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Typically, Equation (1) is solved by means of operator split-
ting (Yanenko 1971) into 2 parts: the growth,
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and the redistribution,
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The growth term is solved by an exact integration (Wexler et al.
1994). The redistribution term is an advection-like equation,
where H

3 can be thought of as wind velocity. Hence the re-
distribution has been computed traditionally by an advection
solver. A study of different types of advection solvers used in
the solution of the redistribution term is presented in Dhaniyala
and Wexler (1996). They recommend a modi� ed Bott solver
(1989) to compute the redistribution ef� ciently and accurately.
Further comparisons among advection solvers for the conden-
sation equation are presented in Yang et al. (1999). The redis-
tribution equation is particularly dif� cult due to its hyperbolic
nature. Oscillations and diffusion cause erroneous waves and
underprediction of peaks (Oran and Boris 1987). Furthermore,
many schemes used to solve the advection equation fail to con-
serve mass and are not positive de� nite.

Important Characteristics of AQMs
AQMs that include aerosols typically consume most of the

computational time solving the aerosol thermodynamics opera-
tor (Meng et al. 1998). The thermodynamics module computes
the mass transfer rate that is used in the dynamics of condensa-
tion and evaporation of aerosols. To better understand the com-
putational pro� le of the aerosol operator, the California Insti-
tute of Technology (CIT) airshed model (Harley et al. 1993) is
used as a host model. The CIT model is a three-dimensional
aerosol model used to analyze aerosol dynamics in the South
Coast Air Basin of California. The model has 47 gas species
and 19 aerosol species distributed into 8 bins. The computational
cost of the aerosol operator inhibits the use of a large number
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of bins to discretize the continuous distribution. With 8 bins,
the CIT model requires 5 days to simulate a 24 h episode on
a typical workstation. The number of bins discretized in other
aerosol models varies between 2 and 12. With a low number of
bins, it is crucial to use an accurate solver to resolve the aerosol
distribution.

Three-dimensional AQMs use operator splitting to solve the
general aerosol dynamic equation. Typically the splitting is per-
formed as follows:
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with Tx ; Ty; Tch ¡ z , Taero, and c representing the transport in x ,
transport in y, z-transport and chemistry, aerosol operator, and
species concentration, respectively. The aerosol operator, Taero,
solves the condensation equation in the order of 70 times. That
is, within each major aerosol operator time-step 1t , the operator
in turn takes approximately 70 growth and redistribution time
steps. During these growth and redistribution computations the
mass distribution of the aerosols is not affected by any other
processes inside Taero. After the growth and redistribution are
computed, the thermodynamic equilibrium is recomputed by
SCAPE2 (Kim et al. 1993; Meng et al. 1998). With these facts
in mind, a new solver is created to address the low bin num-
bers and to take advantage of the large number of condensation
computations.

ALGORITHM DESCRIPTION

Redistribution: Semi-Lagrangian Flux Integrated Methods
Utilizing Langragian Fluxes

The redistribution operator given in Equation (3) is an advec-
tive equation that has been widely studied (Rood 1987; Chock
1991; Dabdub and Seinfeld 1994). Flux integrated semi-
Lagrangian (FISL) methods have been used successfully to solve
these advective problems (Bott 1989; Emde 1991; Walcek and
Aleksic 1998). FISL methods are attractive due to mass conser-
vation and positive de� niteness properties. In particular, the CIT
airshed model uses the modi� ed Bott solver to compute the re-
distribution part. In traditional FISL methods, the � ux between
bins, F , is computed as the mass that evacuates interface I as
denoted in Figure 1. The computation of the evacuated mass is
performed via an integration of the mass distribution inside each
� ux partition:

FI D
Z ¹2

¹1

pi (¹) d¹: [5]

Depending on how the mass distribution is interpolated, a vari-
ety of different schemes arise. For example, Bott uses Lagrange
polynomials, Emde uses quadratic splines, and Walcek uses
sharpened linear interpolators. New mass distributions are

Figure 1. Traditional FISL methods use the primitive function
of the mass distribution to evaluate the � ux leaving cell interface
I. This � ux is added to the mass of cell II by a means of averaging
over the entire cell.

computed by applying a mass balance:

pi (t C 1t) D
FI ¡ FI ¡ 1

1¹
: [6]

Because � ux methods are derived from a mass balance, stable
� ux schemes are always mass conservative. Positive de� niteness
is maintained either by � ux limiting or by monotonic constraints
(Laprise 1995; Bott 1989).

The new scheme is a superset of FISL methods. In the new
scheme, partitioned � ux integrated semi-Lagrangian method
(PFISLM), both semi-Lagrangian � uxes and Lagrangian posi-
tions are used to resolve the discretization. A graphical repre-
sentation of the new scheme is shown in Figure 2. A typical
semi-Lagrangian � ux is the mass that is contained from the
semi-Lagrangian position of the cell interface (¹1) to the cell
interface (¹2). The evacuated semi-Lagrangian � ux enters the
partition de� ned by the cell interface (¹2) and the Lagrangian
position (¹3). This area from (¹2) to (¹3) is known as a partition.
Since the total mass in cell I C 1 is known by (6), the distri-
bution inside each cell is further resolved. Namely, the mass
occupied by the � rst partition, ¹2 to ¹3, is p1 D FI ; the mass
occupied by the second partition, ¹3 to ¹4, is p2 D pi (t ); and
the mass occupied by the third partition, ¹4 to ¹5, is p3 D FI I .
In the next time step, the mass distribution inside cell I C 1 is
interpolated more accurately because more information is avail-
able to describe the mass partitioning inside the cell due to the
Lagrangian partitioning. Depending on the mass transfer rate,
each cell can have up to 3 partitions. Figure 3 shows the possible
scenarios of this method. PFISLM is always a superset of FISL
methods because in FISL methods the mass occupied by p1, p2,
and p3 are lumped together. This lumping tends to cause greater
diffusion.
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Figure 2. The new method, PFISLM, uses both the semi-Lagrangian and the Lagrangian position of cell interfaces in its com-
putation. The � ux leaving cell interface I is not averaged into cell I C 1, but is recorded into the partition de� ned from ¹2 and ¹3.
These partitions permit accurate interpolation as indicated in time level N C 1.

Figure 3. Three possible scenarios that could arise from PFISLM. The � rst scenario occurs when the � uxes are leaving cell I C1.
The second occurs when one � ux is entering and the other is exiting cell I C 1. The � nal possibility is when both � uxes enter cell
I C 1. These possibilities lead to either 1, 2, or 3 partitions to better resolve each cell.
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PFISLM has 2 subtle points that must be addressed. First, the
information stored in each partition is used upon the next itera-
tion within a single aerosol operation. The mass in each partition
is unchanged by other physical processes during the Taer o op-
eration, as stated in the previous section. The redistribution and
growth are computed numerous times and thus the information
in each partition is used effectively. Second, because of the rela-
tively low number of available bins, this method provides greater
resolution by having additional information from each partition.

Growth
The growth term given in Equation (2) is computed from a

mass balance and the growth law. In Figure 4, a sample cell
with 3 different partitions is shown. The growth is computed
for the entire cell and is distributed to the enclosed partitions
accordingly. The growth for the entire cell is found by a direct
integration of the growth equations,
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The solution to those 2 simultaneous equations is given as

pi (t C 1t; ¹) D pi (t; ¹) C
Hi

H
p(t; ¹)[eH1t ¡ 1]: [9]

Figure 4. Schematic of a representative case with 3 partitions
in the cell. PFISLM is designed to be mass conservative, thus
the total mass occupied by the whole cell is equal to the sum
of the masses in each partition. The growth is computed for the
entire cell and allocated to each partition according to a mass
conservation argument.

The mass increase or decrease in each partition is computed
by solving a simple set of equations that represents mass conser-
vation, the solution to the growth equation, and the contribution
of the cell growth from each partition in accordance to its relative
mass to the entire cell. That set of equations is given as

pi 1¹ D p11¹1 C p21¹2 C p31¹3; [10]

growth D
Hi

H
p(t; ¹) [eH 1t ¡ 1]; [11]

massgrowth j D massgrowth
mass j

mass
: [12]

Here the massgrowth is the growth of the mass in the entire
cell, growth is the growth of concentration in the entire cell,
mass j is the mass occupied by partition j , massgrowth j is the
growth of the mass in partition j , pi is the concentration in the
entire cell, and p j is the concentration in partition j . Substituting
massgrowth j D growth j 1¹ j , massgrowth D growth 1¹, and
mass j D p j 1¹ j into Equation (12), the solution to the growth
term in each partition is obtained by

growth j D growth
p j

pi
: [13]

Other algorithms can be used to distribute the growth in a cell to
its partition as long as they are mass conservative. For example,
algorithms that exploit the variations of the condensation rate
and species concentration within each partition can be used. The
method developed here is the simplest to implement by assuming
no spatial variations for the concentration and condensation rate
within each partition.

DESCRIPTION OF NUMERICAL TESTS
Tests are developed to represent situations encountered in the

atmosphere. In particular, the number of bins used in tests resem-
bles those used in air quality models. Other comparisons have
been presented in the scienti� c literature using 30 bins, which is
excessive with the computational requirements of AQMs. Here,
tests are performed with the more reasonable amount of 12 bins.
Tests should also represent the conditions of actual models in
regard to the rate of condensation and the number of actual con-
densation computations. As described subsequently, the conden-
sation equation in AQMs requires accurate solvers if these tests
are developed to have similar conditions to actual AQMs.

Three schemes are compared: a Bott solver with a fourth-
order Lagrange polynomial, which has been considered supe-
rior to various other solvers by Dhaniyala and Wexler (1996);
a PFISLM with a linear interpolation; and a PFISLM with
quadratic interpolation. The quadratic interpolation is analogous
to the one used by Emde (1991). The new solver is independent
of interpolators; a linear and a quadratic interpolator are used due
to their ease of implementation. Any other interpolator could be
used so long as the interpolation represents the primitive function
of the mass distribution. This condition is met when the integral
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of the interpolator over each partition is equal to the mass occu-
pied by each partition. As with FISL methods that yield a host of
new schemes with different interpolators, PFISLMs also yield a
host of new and more highly resolved schemes.

Test I-A: Condensation and Evaporation of Cosine Hills.
Test I-A is an ideal case with constant condensation rates. Us-
ing 12 bins and 20 species, different cosine hills are condensed
and evaporated back and forth until the number of required it-
erations is met. The test is performed for 4 Courant numbers,

H
31x 1t , of 0.1, 0.2, 0.4, 0.5. Higher Courant numbers need not
be tested since they should not be used in AQMs. The number of
iterations that the solver must perform in this test is set to 200, a
stringent but common number of iterations that the aerosol oper-
ators use to compute condensation in AQMs. For example, it is
found that condensation gains mass and redistributes relatively
quickly, thus more mass is introduced into the bins, which re-
quire recomputation of the mass transfer coef� cients. This cycle
is repeated until the aerosol operator time step is met. The re-
computation of mass transfer coef� cients is the primary reason
why larger Courant numbers should not be used: the cell should
not evacuate more than half of its contents before the recompu-
tations of the mass transfer rate is performed. Mathematically,
Test I-A uses the following initial conditions:
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A schematic of this test case is shown in Figure 5. The cosine
hills are condensed until the base of the cosine hill reaches the
boundary, evaporated back at the same rate to the initial condi-
tions, and then condensed again. The condensation–evaporation
cycle is repeated until 200 iterations are met. The � nal solution
is expected to equal the initial condition. By condensing and
evaporating back and forth, the test is able to gauge schemes at
a high number of iterations without reaching the boundaries and
without growing unbounded due to the exponentiation of the
growth term. This test case is more stringent than that presented
in Dhaniyala and Wexler (1996), since it requires more itera-
tions, and represents AQMs accurately. In brief, Test I-A gauges
the peak retentive properties of solvers under a large number of
iterations.

Test I-B: Condensation and Evaporation of Step Concen-
trations. This test is similar to Test I-A except for the initial
conditions, which are now step functions of height 1:0 for the
submicron particles and have no concentrations for particles
larger than 1:0 micron. The submicron particles condense into
the larger bins and then evaporate back to the initial conditions.
The number of iterations are the same as in Test I-A. Test I-B

Figure 5. Schematic of Test I, where cosine hills are under-
going condensation and then evaporation. Each cosine hill con-
denses until the base of the cosine hill reaches the boundary. At
that point, the cosine hill evaporates back to the initial condition.
This procedure is repeated for 200 iterations.

is demanding due to the high frequency Fourier modes in the
step functions; transport of those modes with many iterations
provides a stringent test for stability and accuracy.

Test II: Hazy Conditions. Test II is described by Seigneur
et al. (1986) and represents hazy conditions in urban areas. Sul-
furic condensation rates are 5.5 ¹m3cm¡3 per 12 h. The growth
law is given by Fuchs and Sutugin (1971) as

dv

dt
D

4¼r D

1 C
¡ 1:333Kn C 0:71

1 C Kn

¢
Kn

vm P; [15]

where D is the diffusion coef� cient, Kn is the Knudsen number,
P is the ambient vapor pressure, r is the radius, and vm is the
molecular volume of the condensing vapor. Hazy conditions
in urban areas represent a stringent test due to its larger mass
transfer rate. The performance of various solvers for Test II
are presented by Zhang and Seigneur (1999). Test II gauges
the performance of solvers under realistic growth rates, and the
solvers’ ability to suppress oscillations.

Test III: Practical Application. The � nal test is a full im-
plementation in the CIT airshed model (Harley et al. 1993). The
CIT model includes advection, diffusion, chemistry, deposition,
and emissions. The episode simulates August 27 and 28, 1987,
for the South Coast Air Basin of California. The domain is ir-
regular and has 5 layers in the vertical direction with 994 grid
points in each layer. The domain could be tightly � tted inside
a rectangular domain of 50 £ 27 grid points. The spacing be-
tween each grid point in a layer represents 5000 m. There are
47 species in the gas phase and 19 species in the aerosol phase
using 8 � xed bins in the simulation. The aerosol thermodynam-
ics is computed using SCAPE2 (Kim et al. 1993; Meng et al.
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1998). Test III compares the performance and accuracy of the
modi� ed Bott solver (Dhaniyala and Wexler 1996) and PFISLM
implemented in the CIT model to solve the aerosol condensa-
tion/evaporation equation.

RESULTS
The following performance indices are evaluated to measure

the relative accuracy among the algorithms:

MD D
P

x ;y c(x; y; t )2
P

x ;y c(x; y; 0)2
; [16]

MA D
Max [c(x; y; t )]

100
; [17]

ME D
Max jc(x; y; t) ¡ cexact(x; y; t)j

100
; [18]

where MD, MA, and ME are the mass distribution ratio, maxi-
mum ratio, and maximum error ratio, respectively. Mass conser-
vation and minimum ratio are not supplied since all 3 schemes
tested are mass conservative and positive de� nite.

Figure 6a shows the results of Test I-A for a Courant num-
ber of 0.4. Because the test condenses and evaporates the co-
sine hill back and forth, the exact solution is the initial cosine
hill. In Figure 6a, the Bott solver displays large diffusive errors.
PFISLM implemented with a linear and quadratic interpolator
shows more accurate results. Table 1 displays the performance
of the schemes for various Courant numbers. The Bott solver

Table 1
Performance of the 3 schemes with Test I-A for 4 different

Courant numbers

PFISLM PFISLM
Bott w/linear w/quadratic
(%) (%) (%)

CFL D 0.1
Error ratio 19.8 3.7 6.6
Mass distribution ratio 81 97 93
Maximum ratio 84 99 95

CFL D 0.2
Error ratio 28.4 8.7 7.8
Mass distribution ratio 74 93 92
Maximum ratio 76 95 95

CFL D 0.4
Error ratio 34.8 7.7 2.9
Mass distribution ratio 70 92 98
Maximum ratio 71 94 99

CFL D 0.5
Error ratio 35.3 0.0 0.0
Mass distribution ratio 70 100 100
Maximum ratio 71 100 100

Table 2
Performance of the 3 schemes with Test I-B for 4 different

Courant numbers

PFISLM PFISLM
Bott w/linear w/quadratic
(%) (%) (%)

CFL D 0.1
Error ratio 23.6 11.0 14.8
Mass distribution ratio 93 94 94
Maximum ratio 117 104 107

CFL D 0.2
Error ratio 27.7 14.0 17.0
Mass distribution ratio 93 93 94
Maximum ratio 120 105 110

CFL D 0.4
Error ratio 30.8 14.1 13.2
Mass distribution ratio 93 94 96
Maximum ratio 124 106 105

CFL D 0.5
Error ratio 31.7 0.0 0.0
Mass distribution ratio 94 100 100
Maximum ratio 125 100 100

has problems with lower Courant numbers, while the PFISLM
performs relatively well even though it uses low-order interpo-
lators. It is important to note that at a Courant number of 0.5, the
PFISLM is perfect. In fact, the method has 3 Courant number re-
gions where it provides exact performance. Namely, at Courant
numbers near 0, 0.5, and 1, the method has increased accuracies.
This is due to the fact that the new method takes advantage of
both semi-Lagrangian and Lagrangian positions to increase its
performance throughout the Courant number range.

Table 2 presents the performances of the various schemes for
Test I-B. After the cycles of condensation and evaporation, the
PFISLM with linear interpolation provided the most accurate so-
lution for this test. The primary reason for the better performance
of the linear interpolation is due to the high frequencies associ-
ated with a step function. With lower order interoplation much
of the noise from higher frequencies can be reduced. Figure 6b
gauges the ability of the various schemes to maintain the shape
of the inital conditions. This test is particularly stringent due to
the high frequency inherent in the step function and the number
of condensation/evaporation cycles. The best time step to use
for an accurate solution is for the Courant Number of 1

2 , where
both interpolations with the PFISLM schemes did not propa-
gate any errors. The best time performance of the 3 schemes are
from the Bott solver. Given that the Bott solver took 1.0 time
units, PFISLM with linear interoplation took 1.6 time units and
PFISLM with quadratic interoplation took 1.9 time units. How-
ever, due to the high accuracy of the PFISLM methods, larger
time steps can be taken without loss to accuracy, as Tables 1 and
2 present. Furthermore, the results of Test III, shown later, also
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(a)

(b)

Figure 6. (a) The results of Test I-A show that the Bott solver is diffusive, while the PFISLM with linear and quadratic interpolators
preserve the peaks within 10%. (b) The results of Test I-B show results similar to Test I-A in Figure 6a. The stringent initial conditions
are particularly dif� cult due to the inherent high frequencies of the step functions.
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Figure 7. Test II gauges the performance of the solvers with respect to oscillation suppression. The Bott solver has an erroneous
growth in the peak in bin number 4. This peak is due to oscillations and ampli� cation of this oscillation by the growth law. This
erroneous peak consumes much of the available gas for the peak in bin 7 to grow where it is supposed to be. PFISLM with linear
and quadratic interpolators is able to represent the peak at bin 7 within 4%.

support the use of larger time steps in three-dimensional airshed
models.

Figure 7 shows the resulting mass distribution of Test II. In
this case the initial condition condenses to the higher � nal so-
lution. The “exact” solution is computed using 500 bins and
taking small time steps. The Bott solver behaves erratically at
lower bins with an erroneous peak near 0.01 ¹m. The new solver
with the quadratic interpolator predicts the concentration be-
tween 0.1 ¹m and 2.15 ¹m with an average absolute normal-
ized error of 8.1%. PFISLM and Bott have errors of 9.5% and
11.1%, respectively. The erroneous peak near 0.01 ¹m from the
Bott solver is due to small oscillations that occur at lower bins.
The oscillations are ampli� ed by an exponential growth law for
lower bins, as indicated by Equation (9). The problem is then
compounded since the erroneous peak consumes much of the

available gas. With the available gas nearly depleted, the second
peak near 1.0 ¹m is not able to grow to where the exact solution
is. If the oscillations in the Bott solver are suppressed using arti-
� cial � lters, Bott performs better (results not shown). PFISLM
suppresses erroneous growth due to its increased resolution pro-
vided by the partitioning. For example, suppose a bin cell has
2 equally spaced partitions, 1 with 0 mass distribution and the
other with unity mass distribution. Typical FISL methods would
average the 2 partitions, resulting in a cell mass distribution of
0.5. Thus the growth law causes the cell to grow throughout.
With PFISLM, the � rst partition does not grow since a 0 mass
distribution is recognized. Only the second partition grows as
dictated by the growth law. The results are not averaged but kept
in each partition. This is the primary reason that PFISLM is
better suited to handle growth.
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Figure 8. Results from Test III in Riverside for ammonia indicate a similarity between Bott and PFISLM when maximum time
steps are smaller at 5 s for ammonia PM2:5. At the ef� cient maximum time step of 600 s, which is currently implemented, the Bott
solver deviates considerably from the 5 s simulations. PFISLM with 600 s agrees within 10% of the 5 s simulations.

Some results to Test Case III are presented in Figures 8–10.
The city of Riverside is chosen due to its high particulate matter
(PM) concentration of nitrates and ammonia. The city of Los
Angeles is also chosen to represent a simulation of an ammonia
poor condition. The CIT airshed model uses a maximum permit-
ted time step of 600 s for solving the condensation/evaporation
equation. To better ascertain the accuracy of PFISLM and Bott,
a maximum time step of 5 s is set for both Bott and PFISLM.
The results in Figure 8 indicate that with a maximum time step
of 5 s, both PFISLM and Bott produce similar results. However,
with the maximum time step of 600 s, only PFISLM agrees with
the 5 s simulations within 10%. The similarity of PFISLM with
600 s and that of PFISLM and Bott with 5 s is also observed
for ammonia at Riverside. Figure 9 presents the predicted con-
centrations of nitrate PM2:5 in Riverside. Similar behavoir is
exhibited between nitrate and ammonia PM2:5 due to their com-
bined path of formation from ammonium nitrate. In both species,

ammonia and nitrate, the observed data is better matched with
the Bott solver for August 27. However, for August 28, am-
monia and nitrate are better predicted by the PFISLM solvers
and the Bott solver using a stringent maximum time step of
5 s. The Bott solver with 600 s differs from the 5 s simula-
tions by up to 70%. At lower bin numbers, this difference is
even greater. The differences between the new solver and the
Bott solver are due to the diffusive nature of the Bott solver
for many iterations. These results con� rm conclusions obtained
from Tests I-A and I-B, which resemble the stringent nature
of the host model’s conditions. The simulated results from Los
Angeles in Figure 10 show similar patterns as those in Figures
8 and 9. The PFISLMs and the Bott method using the maxi-
mum time increment of 5 s are similar. The Bott solver using
the original maximum permitted time step of 600 s underpre-
dicted the ammonia concentrations in Los Angeles. The crit-
ical issue is that all the PFISLM schemes and the Bott with
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Figure 9. Results from Test III in Riverside for nitrate indicate a similarity between the Bott solver with the maximum time
step of 5 s and the PFISLM with 5 and 600 s maximum time steps. The Bott solver using the maximum time steps of 600 s is
substantially different from the other schemes. The similarity between ammonia PM2:5 in Figure 8 and nitrate PM2:5 predictions
is due to their shared path of formation by ammonium nitrate.

5 s time steps are similar, while the Bott with 600 s is sub-
stantially different. This is observed for all major species and
locations throughout the modeling domain. The performance
times for the Bott solver and PFISLM with a quadratic interpo-
lation using a 32 node parallel machine are similar. For the case
with the maximum time step of 5 s, the episode using the Bott
solver is 1.15 times slower than PFISLM. In the episode with
the maximum time step of 600 s, the Bott solver is 1.12 times
slower than the PFISLM. On average, each day of simulation
with the 600 s maximum time step requires 5 h on a Pentium III
933 MHz.

Test III shows that in order to achieve convergence in real
applications Bott requires small (and expensive) time steps to
advance the solution accurately. Due to the similarity between
the PFISLM and Bott solver using the maximum 5 s and the

PFISLM using 600 s, the PFISLM using 600 s provides an
advantageous reduction in computational time.

CONCLUSIONS
The condensation/evaporation equation plays a vital role in

the prediction of PM in AQMs. The inherent computational cost
of the aerosol operator inhibits the use of a large number of
bins. The rapid transport between the gas and the aerosol phase
components makes the aerosol dynamics equation particularly
dif� cult to compute accurately. The redistribution part of the
aerosol operator resembles the wind advection in AQMs. How-
ever, the redistribution of aerosols is more challenging than wind
advection due to the smaller inherent time scales of the aerosol
operator and limited grid points. A new approach to solving
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Figure 10. Results from Test III in Los Angeles for ammonia indicate similar behavior of the various schemes as that of Riverside.
The Bott solver using the maximum permitted time step of 600 s does not predict results that are congruent to those of the other
schemes. However, the PFISLM method using the maximum time step of 600 s can adequately reproduce the performance as that
with smaller time steps.

the condensation equation is developed to handle these dif� -
cult characteristics of the aerosol operator. The new method is
mass conservative, positive de� nite, peak retentive, and sup-
presses oscillations. The approach is a superset of � ux inte-
grated semi-Lagrangian methods using both semi-Lagrangian
and Lagrangian � uxes. It effectively increases the resolution of
the bins by keeping information about the partitions inside each
bin. This increased resolution permits accurate representation
of the actual dynamics of aerosols, especially with a limited
number of bins.

This paper presents new tests better suited to stringent con-
ditions. Research has shown that the Bott solver is inaccurate
under conditions of current AQMs. The difference in results be-
tween the new solver and the Bott solver is re� ected in both test
cases and in the CIT airshed model. Differences of up to 70%
are computed due to the diffusive nature of the Bott solver. The

largest differences in the CIT airshed model occur at lower bins
and in the afternoon hours.
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