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Abstract: The implementation of Distributed Generation (DG) may lead
to increased pollutant emissions that adversely affect air quality. This work
presents a systematic methodology to characterise DG installation in urban
basins. First, a set of parameters that characterise a DG implementation
scenario is described. Second, a general approach using Geographic
Information Systems (GIS) data is presented. Third, the methodology is
demonstrated by application to the South Coast Air Basin (SoCAB) of
California. Results show that realistic scenarios in the SOCAB concentrate DG
technologies nearby industrial zones and introduce pollutant mass increments
no larger than 0.43% with respect to baseline emissions.

Keywords: Distributed Generation; DG; scenarios; land-use data; GIS; air
quality; urban basins; urban areas; emissions; Combined Heat and Power; CHP;
spatial distribution; duty cycle.
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1 Introduction

Distributed Generation (DG) of electrical power has the potential to supply a significant
portion of the increasing power demands in California and elsewhere (CEC, 1999). DG is
characterised by the implementation of many stationary power generators allocated
throughout urban air basins. In contrast, central-generation sources are typically placed
outside those basins. DG can fulfil the energy needs of numerous customers and provide
benefits in multiple applications. For instance, DG can deliver critical customer loads
with emergency stand-by power; support available capacity to meet peak power
demands; improve user power quality; and provide low-cost total energy in Combined
Heat and Power (CHP) applications.

This potential shift from central to distributed power generation may increase
pollutant emissions and lead to higher levels of ambient ozone and Particulate Matter
(PM) concentrations. Researchers have performed preliminary mass balance estimates of
pollutant emissions impacts due to the potential use of DG (Allison and Lents, 2002;
Ianucci et al., 2000). However, these studies are limited to estimations of the mass of
pollutant emissions only, and do not address air quality impacts. Also, Heath et al. (2003)
considered the potential for increased human inhalation exposure to air pollutants when
power plants are replaced by DG. Yet, Heath et al. (2003) restricted their work to
pollutants emitted directly into the atmosphere using a simplified plume model.

Edwards et al. (2002) are among the earliest researchers to use GIS data to analyse
the viability of DG. First, they used GIS data to identify adjacent electrical power users
that hypothetically could be joined together to form a microgrid using DG systems.
Second, GIS data was applied to identify local land-use restrictions such as noise, air
quality limits, and density of buildings that may inhibit or prevent installation of
economically attractive DG technologies. This research did not address the air quality
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impacts of DG; however, a thorough investigation of these effects can be found in
Rodriguez et al. (2005, 2006).

Among other things, assessment of air quality impacts of DG requires a systematic
means of determining the spatial and temporal distribution of emissions that result from
realistic installations of DG in the geographic region of interest. Of course there are other
requirements for a complete assessment (e.g., a detailed atmospheric chemistry and
transport model), but, the current paper focuses upon a systematic methodology for
developing DG installation, operation, and emissions scenarios. The methodology is then
applied to the SOCAB of California to demonstrate its capabilities.

The systematic methodology includes application of GIS data to a
geographically-resolved airshed, use of market studies for DG penetration, chemically
resolved emissions measurements, technology types and features, local emissions
regulations, time resolved and sector dependent electricity demands, and other
information (e.g., stack height, plume temperature and velocity, co-generation emissions
off-set) to develop the DG scenarios.

Regulatory bodies are currently establishing air pollutant emissions limits for DG
technologies. The current methodology is an important part of the analysis required to
establish informed emissions regulations. Simulation of future air quality in many regions
of the world requires consideration of DG that will rely upon the current methodology
for appropriate accounting of DG impacts. Urban planners, third party DG equipment
installers, DG manufacturing companies, and others can use the current methodology for
assessment of DG operation within an impacted urban airshed. The methodology
presented herein is a crucial component for determining where, when or whether DG can
be introduced into urban airsheds.

The parameters identified for the characterisation of a DG scenario are presented in
Section 2. The systematic approach designed to develop DG realistic implementation
scenarios is detailed in Section 3. Finally, the distribution of DG power, the mix of DG
technologies, and the air emissions resulting from the application of the methodology to
realistic scenario development in the SOCAB are discussed in Section 4.

2 Characterisation of DG scenarios

A detailed description of the manner in which DG resources are implemented requires
characterisation of several parameters. Important parameters include the operating
characteristics of the DG units, DG spatial and temporal distribution (operating duty
cycle), and other features of the particular instance of DG use. The current methodology
identifies the collection of information and characteristics that are required to fully
describe all the DG characteristics of a “DG Implementation Scenario”. These parameters
are applicable to all urban airsheds where DG adoption is expected.

A DG scenario can be completely described by seven key parameters, each with
various factors that contribute to full characterisation. The seven parameters include:

e total fraction of energy demands that are met by DG in the scenario
e mix of DG resources to meet those demands
e cmissions associated with each DG unit type

e spatial distribution of the DG within the basin
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e  operational duty cycle of each DG
e assessment of emissions that are displaced by DG installation

e other estimates that are required to account for DG implementation and that relate
emissions to the requirements of the Air Quality Model (AQM).

These seven parameters that can fully describe a DG implementation scenario are
described subsequently.

2.1 Fraction of energy demand met by Distributed Generation (DG)

The fraction of energy met by DG has a strong influence in the final air quality impacts
of a DG scenario. A high penetration scenario implies that DG units meet a considerable
portion of the total energy needs of the urban basin.

Several research studies have investigated the potential market adoption of DG.
For example, the California Energy Commission Strategic Plan for DG (Tomashefsky
and Marks, 2002) forecasted adoption of DG in California for the year 2020 that could be
as high as 20% of the electricity load growth. Other studies have reached similar
conclusions with regard to DG market penetration (see for example Little, 2000), but, the
rate of DG adoption and amount adopted in any air basin is a matter of significant debate.
As a result, the fraction of energy met by DG is uncertain, and a wide variety of DG
penetration levels are recommended to span the spectrum of possible air quality impacts.

2.2 Distributed Generation (DG) mix

DG is defined as an electric power source connected directly to the distribution network,
or on the customer side of the meter, or to an independent load (Ackermann et al., 2001).
Although the capacity range is not relevant in this definition, a practical maximum DG
electric generation capacity of 50 MW is adopted in this study. In general, DG systems
are comprised of a wide variety of technologies. The DG technologies that are likely to
be implemented in the SOCAB include Natural Gas (NG) fired combustion turbines (GT)
and NG fired reciprocating Internal Combustion Engines (NG ICE), solar Photovoltaics
(PV), Low Temperature Fuel Cells (LTFC), High Temperature Fuel Cells (HTFC), NG
fired Micro-Turbine Generators (MTG) and fuel cell-gas turbine hybrid systems (hybrid).
Diesel and petroleum distillate fuelled units are not included in the current mix of DG
technologies since they are usually not permitted in to run on a continual basis.
These types of units are typically permitted to run as back-up generators.

The specific mix of DG technologies to be installed in any region for any future year
is challenging to forecast. The technology mix is dependent on the number and type of
energy customers in that region and a host of other economic and regulatory variables
(e.g., electricity prices, gas prices, DG incentives, transmission constraints, emissions
standards, etc.)

Each market segment predominantly uses specific types of DG technologies because
the DG capacity levels and features happen to be best suited to meet the energy demands
of that market segment. For example, residential applications in the range of 1-5 kW will
likely favour FCs and PV; commercial and small industrial sectors, with capacities ranges
of 25-500 kW are more suited for PV, MTGs, small ICEs and FCs; large commercial and
institutional sectors, in the range of 500-2 MW, might favour NG reciprocating engines
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and GTs; and finally the large institutional and industrial sectors with 2-50 MW capacity
will be mainly served by GTs. This relationship between DG type and market sector
should be used in the development of realistic DG scenarios. In addition, if information is
available that can identify the spatial distribution of market segments this relationship
should be used to determine the spatial distribution of DG. This relationship also helps to
estimate the distribution and duty cycle of technologies.

2.3 Spatial distribution of Distributed Generation (DG)

It is important to capture the spatial distribution of emissions within the air basin to
determine the local species concentrations that affect the air quality. A detailed market
penetration study is necessary to estimate accurately the spatial distribution of DG
adoption. When a detailed market study is not available, reasonable estimates of DG
power can be developed based upon demographic and economic parameters that
can be correlated to power (e.g., population data, population growth data, electricity
consumption data, land-use data).

2.4 Distributed Generation (DG) duty cycle

The DG duty cycle accounts for the temporal variation of DG power production that
leads to the overall capacity factor (number of hours of operation/total hours) for each
DG device. The actual duty cycle for an individual DG unit depends upon maintenance
schedules, economics, power demand, and other factors. For a specific scenario some
DG technologies will likely operate as base-loaded devices, i.e., they will operate
continuously. For example, high temperature FCs are usually base-loaded due to both
economic (high efficiency and high capital cost portend continuous operation for
reasonable payback) and operational factors (high temperature operation leads to long
start-up, and high thermal stresses associated with transients). On the other hand, other
DG types are expected to operate primarily during peak hours. The combined DG duty
cycle of all DG units operating in each cell results in a different set of pollutant emissions
at each hour.

2.5 Emissions specifications

There is a wide range of emissions factors that are either available as measured data or
estimated by various investigators for each DG technology type. Some DG technologies
emit zero or near zero pollutants (e.g., PV and FC systems). On the other hand, some DG
technologies emit more pollutants than central station power plants. An example
set of data that characterises DG emissions from various technologies is proposed by
Allison and Lents (2002).

2.6 Emissions displaced

Many DG technologies will be adopted within urban basins as CHP applications, since
the higher overall energy efficiency of CHP can improve the economics of DG projects.
Waste heat produced during electricity generation is captured by a recovery system
that provides heat to meet facility thermal loads. As a result, DG/CHP replaces
the heat produced by burning fuel in a boiler leading to a reduction (displacement) of
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boiler-associated emissions. For retrofit DG/CHP applications, emissions from old,
more-polluting boilers are displaced, whereas for new applications displacement of
emissions from new equipment (i.e., more efficient and lower polluting boilers) is
considered.

Emissions can also be displaced by operating DG on waste gases from solid landfills,
oil fields, or biomass gas emissions. In these cases, the DG application displaces either
direct hydrocarbon emissions or flared gas emissions depending upon the current status
of the waste gas handling. According to Allison and Lents (2002), all DG units in this
type of application reduce ozone related emissions compared to a central station
combined cycle power plant. Many landfills have already implemented DG (Lenssen,
2001) to substitute for flares and produce on-site power and heat.

Other DG applications in which emissions could be displaced include the replacement
of old central power plants and the substitution of lower emitting DG technologies for the
diesel generators.

2.7 Combined Heat and Power (CHP) emissions displacement

Emissions displacement is accounted when DG installations include CHP. Several
parameters for emissions displacement are estimated such as the fraction of DG installed
technologies with CHP; the average heat recovery capacity factor; the old and new
boilers mix being displaced, and their corresponding efficiencies and emission factors.
A detailed description of the approach developed to assess displaced emissions is
presented elsewhere (Samuelsen et al., 2005).

2.8 Other estimates

As some of the DG technologies emerge in the marketplace, certain features of these
technologies, including accurate pollutant emissions rates and emissions speciation, are
not readily available. In addition, features such as continuous vs. peak power
applicability, size of equipment, fuel availability or emissions stack height often need to
be estimated. While emissions are being measured from various DG types (Phi et al.,
2004), data are often not available. Therefore, reasonable estimates or assumptions are
applied when necessary.

A significant factor that must be estimated is the degradation rate for each of
the DG technologies. All DG technologies experience some degradation in efficiency
performance and many may also degrade in the pollutant emissions performance. When
degradation data is not available, degradation must be estimated. The adoption rate of DG
power in any region is uncertain. Therefore a variety of adoption rate trends must be
estimated. Finally, some technologies are expected to improve substantially their
emissions and efficiency performance over the next several years. This improvement in
performance must also be considered for accurate development of a DG scenario.

3 GIS land-use data

Realistic predictions of air quality impacts depend on the assumptions that finally
define the spatial and temporal distribution of DG operation and emissions. This paper
presents a systematic approach used to develop realistic DG implementation scenarios.
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This approach relies on DG market penetration literature data and land-use GIS data to
estimate the spatial distribution of DG power as well as the mix of DG technologies.
In the following sections the characteristics of GIS data are described, and the systematic
approach that is applied to develop a realistic DG implementation scenario is detailed.

To use land-use GIS data for the development of DG scenarios for AQMs, the
information contained at the resolution of the GIS data set must be converted to
the resolution of the AQM grid. Since GIS data typically has a finer resolution, the
systematic aggregation of land parcels inside each cell with the same generic land-use
type is accomplished using the GIS software ArcMap. The main challenge in this
aggregation process is to correctly distribute land-use polygons that are shared by several
AQM grid cells. The final result is a database of land-use information in model cell
coordinates each with an associated distribution of surface areas for the land-use types of
interest.

4 Methodology for realistic DG scenarios

GIS land-use categories can be related to market segments, and those segments
associated preferentially with specific DG technologies, specific duty cycles, differing
rates of DG adoption, etc. As a result, one can characterise a DG scenario with a set of
DG technologies that are likely to be predominant in certain market segments and certain
regions because their capacity and operating characteristics are best suited to the energy
demands of that market segment. The steps required to develop realistic scenarios based
on GIS land-use data, DG size, DG type, expected or known DG emissions, and other
available data and insights is presented in this section following a ten-step methodology.
These ten steps are:

Step 1: Define the market sectors of interest (for which market studies or information is
available) into which the original larger number of high-level land-use categories of the
GIS data are aggregated, and convert the GIS data resolution to match that of the AQM
resolution using GIS conversion tools (e.g., ArcGIS).

Step 2: Once the market sectors are identified and developed as comprising all land-uses
of interest, one must divide the area of each sector and each cell, 4,, into sub-categories
according to power demand (<50 kW, 250-1,000 kW, 1-5MW, 5-20 MW, and
20-50 MW). The basis for this disaggregating process is information that is available for
energy consumption in various market sectors that are segregated into power level
categories. The current paper identifies several example reports on energy consumption
surveys in the commercial, residential and manufacturing sectors that have been produced
by the EIA (1999a, 1999b, 2000) as useful for this purpose. These reports relate total
floor space of various establishment types in each sector to the annual electricity
consumption. From these data the average power demand for each establishment is
estimated. The results of these analyses are normalised by dividing the area of each size
category by the total area in that sector to get a relative area per sector (i) and per size
category (), which is represented by S;;. If no similar data is available for a market
sector of interest then either one must commission a study to determine this information
or estimates must be developed. The equation that relates total area to area per size
category for each of the sectors considered is:
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ij Ai,k . (1)

Step 3: Determine DG power in all the disaggregated areas (per size category and per
sector) using a new factor called the “Adoption Rate Relative Intensity”. This factor
relates land-use area to the relative amount of DG power adopted as a function of size
category and market sector. The adoption rate relative intensity factor, R;;, accounts for
the fact that a certain amount of real state that is occupied by a certain economic sector
will adopt DG technology at a rate that differs from that of other sectors. Values for this
factor are based on a report that describes Combined Heating and Power (CHP)
penetration in the commercial and industrial sectors in California (CEC, 1999) together
with the authors’ insights for other categories.

DG power associated with each of the size categories in each sector and each cell,
P, is described by the following equation:

4 R
PP, )

é.l- a] Ai,j,kRi,j

The total DG power in cell &, Py, 4, is determined as a function of the assumed total
implementation of DG power in the region of interest (portion of increased power
demand met by DG):

a, a.‘,- Ai.j.kRi,j
Tot k == : Tot region (3)

a,a a4k,

where Py region 15 the assumed total implementation of DG power in the region of interest.

Step 4: Determine the temporal variation of DG power due to the variety of duty cycles of
the various DG units in each of their particular applications. The temporal variation of the
DG power due to the variety of duty cycles of the units is introduced into this procedure
as a function of the particular market sector that the particular types of DG units are
serving. Average load profiles are calculated for each sector based on hourly electric data
obtained from the local utility. To apply the sector specific duty cycle a normalised
vector factor, D;;, is determined. This factor describes the hourly power load profile
expected in each sector. The peak power for a particular sector in a cell, P;4, can occur at
any one hour of the day in a particular sector. Thus, multiplying the normalised duty
cycle by the peak sector power in each cell produces the total power per sector and per
cell and operating in hour /:

Pf,k,h = Pi,kDi,h’ “4)

Step 5: Determine the relative contribution to total power in each cell by every DG type
considered. Six tables are developed (one for each sector), in which the relative expected
contribution of each DG type in each size category, W;,;, is presented. Table 1 presents
the relative contributions of DG technology types for the industrial sector as an example.
The rest of the tables for the other sectors can be found elsewhere (Samuelsen et al.,
2005). The relative contribution factors for all six sectors are based on market penetration
studies of DG technology types in the industrial sector (Little, 2000), utility sector
(Tanucci et al., 2000), and building sector (Boedecker et al., 2000) and the authors’ or
other expert estimates on market distribution of DG technology types in each of the size
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categories. The equation that determines the relative contribution of each DG technology
in each cell for a particular hour of the day, 7;,, is given by:

é, é,jVVi,/,j 'B‘j‘k,h
T;,k‘h = . (5)
PTot,k,h
Table 1 Estimated relative contributions of DG technology types in the industrial sector
as a function of size class
LT Fuel HT Fuel MTGs NG ICEs Hybrid
Size categories  Cells (%)  Cells (%) (%) (%) PV (%) GT (%) (%)
<50 kW 0.0 0.3 0.7 0.0 0.0 0.0 0.0
50-250 kW 0.0 2.1 13.6 0.0 0.0 0.0 0.0
250-1,000 kW 0.0 2.9 0.0 10.1 0.0 9.7 2.5
1-5 MW 0.0 0.0 0.0 10.1 0.0 9.7 2.5
5-20 MW 0.0 0.0 0.0 0.0 0.0 22.7 0.0
20-50 MW 0.0 0.0 0.0 0.0 0.0 13.0 0.0
Total 0.0 52 14.4 20.1 0.0 55.1 5.0

Step 6: Apply weighting factors for relative DG adoption rates that depend on the
location within the basin. These factors may include such items as local zoning
restrictions and environmental dispatch considerations. The systematic procedure
presented thus far, uses average DG adoption factors for all cells throughout the basin.

Step 7: Calculate pollutant emissions in each cell and at the time resolution of the AQM,
based on the emissions factors e; for each DG type presented in Tables 2 and 3. The total
emissions of generic pollutant X at time /, and in cell £, are:

My,,= ag,k,h € x- (6)
I

Step 8: Apply further speciation of the criteria pollutants (NO,, VOC, SO, and PM) at
the level required by the AQM.

Table 2 Emissions factors used to develop DG scenarios in the current study for DG units
installed in the period 2003-2006

Efficiency
Generation  (based on co voc NO, SO, PM CO, NH;
type HHYV) (IbssMWh) (Ibs/MWh) (Ibs/MWh) (Ibs/MWh) (Ibs/MWh) (IbssMWh) (Ibs/MWh)
MTG 0.27 2.85 0.05 0.70 0.01 0.08 1500 0.00
GT (<3 MW) 0.24 0.31 0.04 0.46 0.01 0.09 1660 0.17
GT (>3 MW) 036 0.21 0.02 0.13 0.01 0.06 1130 0.06
NG ICE 0.32 1.77 0.44 0.44 0.01 0.07 1270 0.00
LT FC 0.36 0.10 0.90 0.07 0.01 0.06 1130 0.00
HT FC 0.48 0.10 0.02 0.07 0.01 0.05 850 0.00

Hybrid 0.70 6.00 1.00 0.50 0.004 0.03 580 0.00
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Table 3 Emissions factors used to develop DG scenarios in the current study for DG units
installed in the period 2007-2010

Efficiency
Generation  (based on co roc NO; SO PM Co; NH;
type HHYV) (IbssMWh) (IbssMWh) (Ibs/MWh) (Ibs/MWh) (Ibs/MWh) (Ibs/MWh) (Ibs/MWh)
MTG 0.27 0.10 0.02 0.07 0.01 0.08 1500 0.00
GT (<3MW) 024 0.31 0.04 0.46 0.01 0.09 1660 0.17
GT (>3 MW) 0.36 0.21 0.02 0.13 0.01 0.06 1130 0.06
NG ICE 0.32 1.77 0.44 0.44 0.01 0.07 1270 0.00
LT FC 0.36 0.10 0.02 0.07 0.01 0.06 1130 0.00
HT FC 0.48 0.10 0.02 0.07 0.01 0.05 850 0.00
Hybrid 0.70 0.10 0.02 0.07 0.004 0.03 580 0.00

Step 9: Account for any emissions displacement such as that associated with the
replacement of a boiler that could occur if the DG installations include CHP.
The procedure to account for CHP emissions displacement described above is to be
applied in this step. The resulting net emissions fluxes are calculated by direct subtraction
of emissions fluxes that account for displaced emissions.

Step 10: Include other realistic factors that can affect the final emissions levels for the
particular year to be simulated. These factors include the rates at which individual DG
technologies will be adopted vs. time, and any performance degradation for the particular
DG units that are installed between when they are installed and the year of the simulation.
The performance degradation can include both an increase of criteria pollutant emissions
and a decrease of electrical efficiency that usually occurs throughout the lifetime of any
DG unit. As practically no public data is available on DG performance degradation, an
estimate of 3% annual increase in criteria pollutant emissions is considered for realistic
DG scenarios.

5 Methodology application to SoOCAB

The methodology can be used to develop both realistic scenarios and scenarios that are
developed for scientific completeness, sensitivity analyses, and/or to determine the
potential impacts of unexpected outcomes. The latter type of scenario is called a
‘spanning’ scenario. This manuscript focuses on the systematic approach applied to
develop realistic DG scenarios. To demonstrate this methodology the current work
presents its application to the SOCAB of California, as an example.

5.1 GIS land-use and other data used for the SoCAB application

The development of realistic DG implementation scenarios is built upon available high
resolution GIS land-use data of the five counties that comprise the SoOCAB, namely
Los Angeles, Orange, San Bernardino, Riverside, and Ventura counties. The latest GIS
data set was collected in the year 2000 (P. Gutierrez, Southern California Association of
Governments, personal communication, 2002). These data consist on the counties divided
into land parcels of different area and shape (polygons). The number of parcels per
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county is considerably large. For example the total number of individual land parcels in
Los Angeles County alone is more than 40,000. The land parcels have a resolution of
2 acres (0.0081 km?). Each polygon is associated with a database that contains an ID
number, total area, and zone classification code. Figure 1 shows a small region near Long
Beach that illustrates the typical number and resolution of the land parcel polygons.
Black lines in the figure represent the location of the 5 X 5 km model resolution in this
same region. The GIS database contains 132 different specific land-use types that are
aggregated into 13 generic land-use types.

Figure 1 Generic land-use categories in Long Beach area

Legend
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Ll ; ; = | I Extraction
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. = ] Low Density Residential
: [ Medium to High Density Residential
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B Vater & Floodways

Table 4 presents a summary of five realistic scenarios that have been formulated using
the methodology applied to SOCAB. Tables 2 and 3 summarise the emissions factors for
DG systems installed in the periods 2003—2006 and 2007-2010, respectively, that were
used in the development of these scenarios. These values are used in the development of
all realistic DG scenarios and are based in the emissions factors provided by Allison and
Lents (2002) as well as the emissions limits for 2003 and 2007 imposed by the
corresponding California agencies.

Table 4 Summary of realistic DG implementation scenarios developed for the SoOCAB
in year 2010
Increased power DG power CHP
Name  Common parameters demand (%) adoption displacement
R1 Technology mix depends on 5 Linear Yes
R2 activity sector, high penetration 10 Linear Yes
of low emission technologies, ]
R3 GIS land-use distribution, 20 Linear Yes
R4 realistic duty cycles, low 5 Low early® Yes
RS performance degradation Linear No

?98% of DG installed in the period 2007-2010.
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In addition, spanning scenarios have been developed using the emissions factors of
Allison and Lents (2002) directly, since they represent the best estimates from a
compilation of various sources. These data, however, include emissions factors that are
higher than the current regulated limits for DG units by the California air quality
regulatory agencies. Whenever this occurred, the values selected to characterise a specific
DG unit were the applicable standards levels instead of the emissions factors of Allison
and Lents (2002).

5.2 Application of the ten-step methodology to SoCAB

This section presents the specifics, assumptions and other considerations of applying the
general ten-step methodology for realistic scenarios discussed above to SOCAB.

Step 1: In the case when applying Step 1 to SoCAB, six market sectors are selected to
comprise the original 13 land-uses identified as of interest in ArcGIS. Table 5 shows the
correspondence between the original 13 land-use categories and the six selected energy
market sectors.

Table 5 Aggregation of land-use types into energy sectors
Sector Land-use types considered in that sector*
Low density residential Low density residential

Rural density residential

Medium to high density residential Medium to high density residential
Commercial Commercial

Industrial Industrial

Agriculture and water pumping Agriculture

Other Extraction

Public facilities and institutions
Transportation and utilities

Under construction

*The rest of the land-use categories (Vacant, Water and Flood Ways, and Open Space
and Recreation) assumed with zero DG power.

Step 2: In the SoOCAB case power demand was divided into the following categories:
<50 kW, 250-1,000 kW, 1-5 MW, 5-20 MW and 20-50 MW. Two of the sectors of
interest (Agriculture and Other) required the development of estimated S;; since
no data was available for these sectors. Reasonable estimates were made based
on the §;; of the other sectors and insights of the research team. Table 6 shows
the resulting normalised area factors that are applied to disaggregate (split) the
sector areas (groups of GIS land-use areas) into specific areas for each DG size
category.
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Table 6 Normalised area factors S;; for each DG size category for the different sectors

Low density ~ Medium and

residential high density ~ Commercial Industrial Agriculture  Other
Size category (%) residential (%) (%) (%) (%) (%)
<50 kW 99 95 55 0 30 0
50-250 kW 1 5 17 5 10 5
250-1,000 kW 0 0 20 15 10 15
1-5 MW 0 0 22 0 22
5-20 MW 0 0 30 0 30
20-50 MW 0 0 28 0 28
Total 100 100 100 100 100 100

Step 3: Table 7 presents the current estimates for the adoption rate relative intensity
factors for the SOCAB case. The adoption rate relative intensity factors of Table 7 are
well grounded in the literature and the authors’ insights that are currently available.
However, these factors can be refined and modified at any time as additional detailed
market penetration studies are completed and as information becomes available for DG
market penetration in California.

Table 7 Adoption rate relative intensity factors per size category and per sector, R;;
Medium and

Low density  high density
Size category residential residential ~ Commercial Industrial — Agriculture  Other
<50 kW 1.6 16.4 7.9 7.9 32 1.0
50-250 kW 8.3 208.1 151.7 151.7 8.6 19.1
250-1,000 kW 0.0 0.0 141.5 141.5 8.6 17.9
1-5 MW 0.0 0.0 221.5 221.5 0.0 27.9
5-20 MW 0.0 0.0 0.0 376.9 0.0 47.6
20-50 MW 0.0 0.0 0.0 567.2 0.0 71.6

Step 4: For the SoOCAB application the sector duty cycles were estimated from data
available on the Southern California Edison web page (SCE, 2002) using a resolution of
1-hour (the current AQM time step).

Step 5: The relative contribution to total power in each cell by every DG type considered
using one table for each of the six market sectors of interest as described above were
directly applied to the SOCAB case.

Step 6: No local information on forecasted DG penetration in certain zones of the SOCAB
due to any potential driver has been included in the approach thus far, since data was not
available to suggest preferential DG adoption at any particular location or set of locations
in the SOCAB. However, if at any time preferential DG adoption rates that apply to the
spatial distribution of DG in the urban basin under study are available one should apply a
normalised adoption rate factor in this step.
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Step 7: Pollutant emissions calculations for each ground-level cell at each time step were
accomplished for the SOCAB case as described above.

Step 8: For the SOCAB example the species considered are associated with the CACM
chemical mechanism (Griffin et al., 2002), which requires specific mass fluxes of NO,

NO,, SO,, SOs, 23 specific volatile organic compounds, and 18 types and 8 size classes
of PM.

Step 9: Emissions displacement calculations that account for CHP emissions
displacement were applied to the SOCAB case as described above.

Step 10: Both a realistic exponential increase and a less realistic linear increase of the
accumulated DG power installed in the period 2003-2010 have been implemented in the
application of the current methodology to the SOCAB case.

6 Analysis of DG realistic scenarios for the SOCAB

The systematic approach described above was used to develop five realistic DG
implementation scenarios for the SOCAB (R1, R2, R3, R4 and R5). In the particular case
of applying the current systematic approach to SoCAB, 13 land-use categories were
determined to be sufficient to characterise all land uses required for the development
of DG Scenarios. Figure 2 presents a bar chart with the total areas for the 13 generic
land-use categories. The ‘Vacant’ land-use category has the largest area compared to the
other categories (more than 12,000 km?®). However, as exhibited in Table 5, this category
does not contribute to DG penetration. After the vacant area, the “Low Density
Residential” land-use category comprises about 3,000 km* of the SOCAB. The third and
forth land-use categories with significant areas in the SOCAB are ‘Agriculture’ and
“Transportation and Utilities”, respectively.

Table 8 shows the increase in criteria pollutant and CO, emissions for each DG
scenario. R1 serves as the reference for other realistic cases. Namely, the other four
scenarios introduce a specific variation in only one of the parameters that define R1.
R1 assumes that 5% of the increased power demand from 2002 to 2010 will be met by
DG. This percentage accounts for 0.27 GW of DG power. The spatial distribution of DG
is based on land-use data and DG operation follows realistic duty cycles corresponding to
different activity sectors in each computational cell. In addition, different DG
technologies are deployed depending on the activity area of use. All the other realistic
scenarios exhibit the same emissions spatial distribution as R1. Scenarios R2 and R3
implement a larger DG penetration, i.e., 10% and 20% of the increased power demand,
respectively. NO, emissions are reduced by the same proportion in R2 and R3 with
respect to R1, given the increase in emission displacement due to CHP applications.
The DG adoption rate in scenario R4 assumes an exponential penetration rate that results
in 98% of the total adopted DG float installed in the period 2007-2010. R4 is also the
scenario with the lowest CO and VOC emissions. Finally, scenario R5 neglects emissions
displacement due to CHP and has the highest NO, emissions. Note that scenarios R1 and
RS only differ in the CHP parameter and direct comparison can be applied to assess the
effect of emissions displacement. R1 emissions are reduced by 112% for NOy, 44% for
CO,, and 19% for CO emissions due to the application of CHP. In general, realistic
scenarios introduce mass increments no larger than 0.43% with respect to baseline
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emissions. Baseline emissions are emissions forecasts for the whole SoCAB basin in
2010 and account for population growth, but do not consider any future emissions control
measures or contributions due to DG power. Although basin-wide emission increments
are small, the additional emissions by DG are placed over highly populated and
industrialised regions, where they have the potential to lead to noticeable air quality
impacts (Rodriguez et al., 2006).

Figure 2 Total surface in the 13 generic land-use categories in the South Coast Air Basin
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Table 8 Basin-wide absolute increase of primary criteria pollutant and CO, emissions
per each DG realistic scenario
co NO, yoc NH; SO, PM CO,
Name DG scenario  (ton/day) (ton/day) (ton/day) (ton/day) (ton/day) (ton/day) (ton/day)
#R1 2.26 —-0.09 0.16 0.20 0.03 0.24 1760
#R2 4.53 -0.18 0.32 0.40 0.06 0.49 3520
#R3 9.06 —-0.35 0.64 0.80 0.12 0.97 7040
#R4 1.22 —-0.29 0.11 0.18 0.03 0.24 1740
#R5 2.79 0.75 0.19 0.20 0.04 0.28 3140
Baseline basin-wide  3285.2 681.2 633.8 185.1 125.6 371.6 478,904

SoCAB emissions
2010

Figure 3 presents a contour plot of the DG power (on logarithmic scale) for realistic DG
scenario R1, which uses a land-use weighted spatial distribution, and compares it with
other spatial distributions used for spanning DG scenarios; namely, population weighted,
freeway density weighted, and population growth weighted spatial distributions. Except
for the non-realistic freeway spatial distribution of DG power, which applies a DG
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distribution proportional to freeway density, the other three distributions show relatively
similar patterns with some differences that are worthy of note. The realistic scenarios
(land-use weighted) concentrate DG technologies nearby industrial zones such as Long
Beach, Riverside and Los Angeles. In contrast, population-weighted distribution of DG,
used in most spanning scenarios, is relatively smooth throughout the domain and places
DG predominantly in the central area of Los Angeles. The population growth-weighted
distribution is very similar to the population-weighted distribution, but assigns more DG
power in areas with projected urban growth, such as Riverside or San Bernardino.

Figure 3 Comparison amongst four spatial distributions of DG power in the SOCAB: (a) land-use
weighted; (b) population weighted; (c) freeway density weighted and (d) population
growth weighted

0 1 2 3 4

The application of the 10-step systematic approach for developing realistic DG
implementation scenarios provides a reasonable distribution of DG power among sectors
and among DG types in the SOCAB for 2010. Figure 4 presents the basin-wide DG power
distribution amongst the various sectors and power size categories for realistic scenario
R1. About 60% of total DG power is implemented in the industrial sector and more than
30% is going to the commercial-institutional sector (the sum of categories ‘commercial’
and ‘other”). Only a small fraction of the DG power that is anticipated for installation in
the SoCAB by 2010 is installed to meet power demands in the residential sectors.
However, the actual number of DG units may be higher as power capacities of these units
will be in the range of 1-10 kW.



430 M. Medrano et al.

Figure 4 Basin-wide DG power distribution among sectors and DG power sizes for DG realistic
scenario R1
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Figure 5 presents the basin-wide relative contribution of each type of DG technology
considered in the current study for realistic scenario R1. Almost 50% of the DG market is
being met by GTs, whereas ICEs, MTGs, PV, and FC account for 17%, 15%, 5%, and
10% of the total 2010 DG power market, respectively. The novel fuel cell-gas turbine
hybrids accounts for the remaining 4% of the DG power. These figures are presented on a
total power contribution basis, and do not reflect accurately the number of units installed,
but, rather the contribution to total power demands met by each DG technology type.
For example, a single large industrial GT contributes much more to the power demand
and emissions than a host of small FCs installed in the residential sector.

Figure 5 Basin-wide DG power distribution by DG type for realistic scenario R1
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Figure 6 presents the net resulting emissions from application of DG technology in
SoCAB that were derived by application of the current methodology. Figure 6(a)
presents net DG NO, emissions for case R1, while Figure 6(b) presents net DG NO,
emissions for case R5. Note that the only difference between cases R1 and R5 is that case
R1 includes the DG CHP considerations of the current methodology whereas case RS
excludes CHP. Note that net NO, emissions from DG in case R1 are all negative
(Figure 6(a)) due to displacement of emissions through use of CHP. The peak negative
values (up to —30 kg/day) tend to occur in the most industrialised areas of the SoOCAB
between downtown Los Angeles and Long Beach, where CHP adoption is highest.
The case that excludes CHP (case R5 of Figure 6(b)) shows net increases in NOy
emissions (up to 5 kg/day) that are more disperse due to DG applications primarily in
Long Beach, south of Anaheim and near Riverside. Figure 6(c) and 6(d) present net DG
Volatile Organic Compound (VOC) emissions for cases R1 and RS, respectively.
Because the VOC emissions of boilers are similar in magnitude to those of the DG the net
VOC emissions from DG are not significantly affected by the consideration of CHP
(compare Figure 6(c) (with CHP) and Figure 6(d) (without CHP)). For both cases R1 and
R5 net DG VOC emissions are increased up to 2 kg/day in relatively dispersed regions
near Los Angeles, Long Beach, Anaheim and Riverside.

Figure 6 Basin-wide DG emissions distributions for two applications of the methodology
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6.1 Summary of findings from SoCAB application of methodology

The application of this general methodology to the SOCAB for the year 2010 produced
the following findings:

e CHP emissions displacements associated with most of the realistic scenarios lead to
significant reductions in some criteria pollutant emissions and CO, emissions.
For NOy, displaced boiler emissions are higher than NO, emissions directly
produced by DG, resulting in net negative values for realistic scenarios with CHP.

e Realistic DG implementation scenarios introduce small basin-wide mass increments
no larger than 0.43% with respect to baseline emissions.

e The spatial distribution of DG power based on GIS land-use data results in DG
scenarios that concentrate large capacity DG technologies nearby industrial zones
due to the relatively high adoption rate intensity factor estimated for the industrial
sector.

e  The calculation of basin-wide DG power distribution amongst the various sectors
showed that 60% of total DG power is implemented in the industrial sector and
nearly 32% is going to the commercial-institutional sector.

e Results of basin-wide relative contribution of each type of DG technology showed
that 49% of the DG market is being met by GTs, whereas ICEs, MTGs, PV, FC, and
GT-FC hybrids account for 17%, 15%, 5%, 10% and 4% of the total 2010 DG power
market, respectively.

7 Conclusions

This paper describes a systematic methodology for development of realistic DG
implementation scenarios. The methodology is applied to the SOCAB to demonstrate
capabilities and present results. The methodology is novel in using land-use GIS data as a
foundation for the DG scenario development. The characterisation of these DG scenarios
is the first step required to assess environmental impacts of DG in urban basins.

A realistic assessment of DG emissions for use in regulatory policy or urban planning
must include detailed consideration of several parameters in a systematic approach such
as that contained in the current methodology. The application of this methodology to the
SoCAB demonstrates the usefulness of the tool developed herein. Use of the current
systematic methodology assures reasonable consideration of the multitude of factors that
influence DG air quality impacts.
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Nomenclature
Aijx Area of sector i in size category j in cell £
Aig Area of sector i in cell &
Dy Duty cycle factor in sector i and hour of the day /
erx Emission factor for species X of DG type |
Pk DG power (in MW) of specific sector i in size category j in cell &
Prok Total DG power (in MW) assigned to cell &
Proisoca Total DG power (in MW) estimated for the SOCAB in 2010
R;; Adoption rate relative intensity for sector 7 in size category j
S/ Relative area of sector i in size category j
Tix Relative contribution to DG power of DG type 1 in cell £
Wi, Relative weight for DG type / in sector i and size category j
Subscripts
h Index for hour of day (24 total hours)
i Index for market sector (6 total sectors)
j Index for size category (6 total categories)
k Index for cell number (994 total cells in three-dimensional model)
/ Index for DG unit type (7 types)
List of acronyms
AQM Air Quality Model
CACM Caltech Atmospheric Chemistry Mechanism
CEC California Energy Commission
CHP Combined Heat and Power
CO, Carbon dioxide
DG Distributed Generation
FC Fuel Cell(s)
GT Gas Turbine(s)
HTFC High Temperature Fuel Cell(s)
ICE Internal Combustion Engine(s)
GIS Geographic Information System
LTFC Low Temperature Fuel Cell(s)
MTG Micro Turbine Generator(s)
NO, Nitrogen Oxides
NG Natural Gas
PM Particulate Matter
PV Photovoltaics
SoCAB South Coast Air Basin

SO, Sulphur Oxides




