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a b s t r a c t

Air quality models compute the transformation of species in the atmosphere undergoing chemical and
physical changes. The numerical algorithms used to predict these transformations should obey mass
conservation and positive definiteness properties. Among all physical phenomena, the chemical kinetics
solver provides the greatest challenge to attain these two properties. In general, most chemical kinetics
solvers are mass conservative but not positive definite. In this article, a new numerical algorithm for the
computation of chemical kinetics is presented. The integrator is called Split Single Reaction Integrator
(SSRI). It is both mass conservative and positive definite. It solves each chemical reaction exactly and uses
operator splitting techniques (symmetric split) to combine them into the entire system.

The method can be used within a host integrator to fix the negative concentrations while preserving
the mass, or it can be used as a standalone integrator that guarantees positive definiteness and mass
conservation. Numerical results show that the new integrator, used as a standalone integrator, is second
order accurate and stable under large fixed time steps when other conventional integrators are unstable.

Published by Elsevier Ltd.
1. Introduction

The use of operator splitting in the atmospheric advection–
diffusion equation separates the solution of pollution dynamics
into four key operators: the advection-diffusion operator, the
chemical dynamics, the emissions and deposition, and the aerosol
transport and formation (Carmichael et al., 1986; Lanswer and
Verwer, 1999).

It is important that numerical solutions to all processes
describing pollutant formation should be mass conservative and
positive definite. The advection-diffusion operator (Nguyen and
Dabdub, 2001; Bott, 1989), the emissions, and the aerosols opera-
tors (Nguyen and Dabdub, 2002; Landry et al., in press) are solved
with algorithms that ensure higher-order, accurate, positive defi-
nite and mass conservative properties through flux formulations.
The exception is the operator related to the numerical solution to
stiff chemical dynamics, for which these properties are more
difficult to obtain, as illustrated in Sandu et al. (1997a,b). Most
traditional solutions to chemical dynamics are mass conservative,
as in Verwer et al. (1998), but the addition of the strict positive
en), caboussat@math.uh.edu

Ltd.
definiteness property is difficult to achieve. There has been some
research presented in the literature; for example, Sandu (2001)
developed a method using projection to convert negative concen-
trations into non-negative concentrations via an optimization
routine under a mass conservative constraint.

This paper presents a novel alternative algorithm to attain mass
conservative and positive definite integration of chemical
dynamics. The algorithm developed here solves exactly each
chemical reaction, and uses an operator splitting approach
(Yanenko, 1971) to combine them in order to solve the entire
system of reactions. We prove that the exact solution to each
chemical reaction is positive definite and mass conservative, and
consequently the solution to the entire system also shares those
properties. This new method is called Split Single Reaction Integrator
(SSRI). It can be used independently of other integrators or in
conjunction with an host integrator, in which SSRI is invoked only
when the host integrator provides negative concentrations. SSRI is
second order accurate (Strang, 1968)dwhich is the limit of the
order of accuracy of all air quality models that employ the operator
splitting theory. Numerical results show that the method is stable
for integrations with large fixed time steps.

The structure of this article is as follows. Section 2 develops the
conservation statements. In Section 3, SSRI is presented and the
properties of mass conservation and positiveness are detailed. In
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Section 4, test cases and numerical results are presented to show
the efficiency and stability of SSRI.
2. Chemical dynamics and conservation statements

In order to gauge the mass conservation capabilities of a chem-
ical kinetics solver, a set of conservation measures must be estab-
lished. Establishing such conservation relations defines the
quantities to conserve and provides useful constraints for the
solvers.

To illustrate the framework of conservation relations, consider
a simple set of atmospheric reactions as in Seinfeld and Pandis
(1998):

NO2 þ hv/NOþ O (1)

Oþ O2/O3 (2)

O3 þ NO/NO2 þ O2: (3)

Let the time-dependent concentration vector be cðtÞ ¼
ðNO;NO2;O;O3;O2ÞT and the vector of reaction rates be RðtÞ ¼
ðk1NO2; k2OO2; k3O3NOÞT , where t denotes the time. The system of
ordinary differential equations governing the evolution of the
chemical species in this set of reactions can be represented as

dcðtÞ
dt

¼ uRðtÞ; where u :¼

0
BBBB@

1 0 �1
�1 0 1
1 �1 0
0 1 �1
0 �1 1

1
CCCCA: (4)

Here u is the stoichiometric matrix of the system of chemical
reactions (1)–(3). In order to determine all appropriate conserva-
tion equations, all linear combinations of species that are conserved
have to be found. For these species, the time derivative dc(t)/dt
vanishes. Thus we consider a matrix M that contains all linear
combinations of derivatives that are zero.

M
dcðtÞ

dt
¼ 0; (5)

and substituting (4) into (5) yields

M
dcðtÞ

dt
¼ MuRðtÞ ¼ 0: (6)

Since the relation (6) is true for all times, it follows that

Mu ¼ 0 and uT MT ¼ 0:

Namely, MT belongs to the null-space of uT, denoted by NðuT Þ,
and therefore

M˛NðuTÞT :

The matrix MT is a matrix containing a basis of the null-space
NðuT Þ. In particular, the matrix M for the sample reactions (1)–(3)
is given by:

M ¼

0
@ 1 0 �1 0 1
�1 0 1 1 0
1 1 0 0 0

1
A;

which implies that the mass conservation relations for this simple
system (1)–(3) are

NO — O D O2 [ NO0 — O0 D O0
2

O D O3 — NO [ O0 D O0
3 — NO0
NO D NO2 [ NO0 D NO0
2;

where the superscript 0 denotes the initial concentrations at time
t ¼ 0. The relations given by M are used to quantify the mass
conservation properties of the SSRI integrator. Note that there are
more conservation relationships than just the obvious conservation
of nitrogen and oxygen species.

The use of conservation relations can reduce the number of
differential equations, by replacing them by algebraic relations. In
addition, the use of conservation relations can transform non-mass
conservative integrators into conservative integrators.
3. Numerical algorithm

3.1. An operator splitting approach

Among the existing chemical integrators, there are algorithms
that are positive definite but not mass conservative, e.g. CHEMEQ2
(Mott et al., 2000). On the other hand, there are also many algo-
rithms that are mass conservative but not positive definite (Verwer
et al., 1998). It seems that having both properties is elusive for
higher-order integrators in the literature.

The problem of losing the positive definiteness and mass
conservative characters come either from the numerical approxi-
mation of the ordinary differential equations or from the interpo-
lation and smoothing of the solution. These two artifacts arise since
nonlinear systems of coupled ordinary differential equations are
complex and exact solutions are virtually impossible to derive.

The proposed method relies on explicit exact solutions of
a decoupled set of ordinary differential equations. The coupled set
of chemical reactions is decoupled into a sequence of single reac-
tions. Each reaction is represented by a system of ordinary differ-
ential equations that is considered independently. Moreover, the
exact solution to each single chemical reaction can be derived and
allows to construct a solution that is mass conservative and positive
definite. The solution to the entire mechanism is computed via an
operator splitting scheme using the exact solution of each chemical
reaction. Since the solution associated with each chemical reaction
is mass conservative and positive definite, as we prove later, the
solution to the entire system shares the same properties.

To illustrate the decomposition according to the chemical
reactions, consider three arbitrary chemical reactions:

X1 þ X2/Y1 þ Y2 (7)

X3 þ X4/Y3 þ Y4 (8)

X5/Y5 þ Y6: (9)

Strang (1968) operator splitting techniques can be used to split
fast chemical reactions from slow chemical reactions.

Let us explain briefly how the splitting of reactions can be
achieved. Assume that the reaction (9) is slower than the reaction
(8), which is slower than the reaction (7). The chemical dynamics
can be split as follows. Let Dt be a given time step. First, we solve the
fast reaction (7) for a time step of Dt/2 and the solution is used as
the initial condition for solving the other fast reaction (8) for a time
step of Dt/2. Then, the slow reaction (9) is solved for a time step Dt.
Once the slow reaction (8) is solved, the split is completed by
solving the fast reactions in reverse order, i.e. successively (8), then
(7), for a time step of Dt/2. The splitting of the reactions into a fast-
slow-fast sketch is a symmetric split.
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When dealing with an arbitrary number of reactions in practice,
the chemical reactions are sorted according to their reaction speeds
(from the fastest to the slowest). Starting with the fastest, each of
them is solved for a time step of Dt/2. Once the slowest is solved,
the order is reversed and the procedure is repeated, to solve each of
them with a time step of Dt/2 from the slowest to the fastest.

This symmetric split is a second order accurate time splitting
scheme (see Glowinski, 2003; Marchuk, 1990; Strang, 1968). This
means that an additional numerical error of order OðDt2Þ is intro-
duced by the operator splitting, independently of the method used
for the solution of each individual reactions. Introducing this error
is consistent with the global convergence order of atmospheric
models, and it allows to treat each chemical reaction independently
of the others, and independently of the total number of reactions.

Remark 3.1. A ‘classical’ splitting strategy for a system of ordinary
differential equations typically solves each ODE sequentially. The
proposed strategy splits the chemical reactions (groups of ODEs)
instead of the equations themselves (species).

In the following subsections, the solution of each chemical
reaction is discussed, independently of the reaction speeds. The
exact solution to each chemical reaction, and therefore the solution
of the corresponding system of differential equations, depends on
the number of reactants, but the complexity of the resolution does
not depend on the number of products. The solution to systems
with one or two reactants is discussed first. The number of products
is arbitrary and therefore will be restricted to two for the sake of
clarity. Then the solution method is extended to an arbitrary
number of reactants and products in Section 3.4. The exact solution
to each reaction is proved to be mass conservative and positive
definite.

3.2. Explicit solution to individual reactions:
the case of one reactant

Consider the reaction

aA /
k

bBþ cC; (10)

where a, b, c ˛ N (lower cases) represent the stoichiometric coef-
ficients of the reaction and A, B and C (capital letters) represent the
concentrations of the species. The corresponding reaction speed is
denoted by k. Note that k > 0. The time evolution of the concen-
trations in reaction (10) is described by the following system of
differential equations

dAðtÞ
dt

¼ �kAðtÞa (11)

dBðtÞ
dt

¼ �b
dAðtÞ

dt
¼ bkAðtÞa (12)

dCðtÞ
dt

¼ �c
dAðtÞ

dt
¼ ckAðtÞa: (13)

The conservation relations corresponding to (11)–(13) are
obtained as in Section 2. For the case of this single reaction, u¼ (–1,
b, c) and the associated null-space matrix is

M ¼
�

b 1 0
c 0 1

�
:

Since the product of M and the vector [A, B, C]T is conserved, the
following relations arise

BðtÞ þ bAðtÞ ¼ B0 þ bA0 ¼ constant (14)
CðtÞ þ cAðtÞ ¼ C0 þ cA0 ¼ constant; (15)
where the superscript 0 represents the initial concentrations at
time t ¼ 0. The use of these conservation relations guarantees that
mass is conserved. It remains to be seen that the exact solution to
(11)–(13) leads to a positive solution. Using the conservation rela-
tions, the system of equations (11)–(13) can be solved explicitly. The
exact solution for the reactant in (11) when a > 1 is

AðtÞ ¼
�
ð1� aÞkt þ

�
A0�1�a� 1

1�a

: (16)

The concentration A remains positive for all times if A0 � 0
(which is satisfied for chemical dynamics). When a ¼ 1, the exact
solution for A is a decaying exponential A(t) ¼ A0 exp(–kt) with the
same properties. Equation (16) reveals that A is a non-increasing
function in time. Given A, the products are computed from the
conservation equations (14) and (15):

BðtÞ ¼ B0 þ b
�
A0 � AðtÞ

�

CðtÞ ¼ C0 þ c
�
A0 � AðtÞ

�
:

Since A(t) is a non-increasing function of time, the concentra-
tions B(t) and C(t) are non-decreasing functions in time, and
therefore positive when the initial values B0 and C0 are positive. In
conclusion, all species are non-negative at all times.

Remark 3.2. The number of products is not important, since each
product is linked to a conservation relation similar to (14) and (15)
that states that the concentration of each product is increasing in
time. In Section 3.4, notations are introduced to address the general
case of n reactants and m products.
3.3. Explicit solution to individual reactions:
the case of two reactants

Subsection 3.2 shows that the solution to a reaction involving
only one reactant is mass conservative and positive definite. Here,
the behavior of a reaction with two reactants is derived and similar
properties are obtained. Consider the general chemical reaction

aAþ bB /
k

cC þ dD: (17)

The differential equations describing the evolution of the
concentrations are

dAðtÞ
dt

¼ �kAðtÞaBðtÞb (18)

dBðtÞ
dt

¼ b
dAðtÞ

dt
¼ �bkAðtÞaBðtÞb (19)

dCðtÞ
dt

¼ �c
dAðtÞ

dt
¼ ckAðtÞaBðtÞb (20)

dDðtÞ
dt

¼ �d
dAðtÞ

dt
¼ dkAðtÞaBðtÞb: (21)

For this reaction, u ¼ (�1, �b, c, d) and the null-space matrix is

M ¼

0
@�b 1 0 0

c 0 1 0
d 0 0 1

1
A: (22)
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The resulting conservation relations are

BðtÞ � bAðtÞ ¼ B0 � bA0 ¼ constant; (23)

CðtÞ þ cAðtÞ ¼ C0 þ cA0 ¼ constant; (24)

DðtÞ þ dAðtÞ ¼ D0 þ dA0 ¼ constant: (25)

Note that adding a product E with stoichiometric coefficients e is
either equivalent to adding a differential equation to the Equations
(18)–(21), adding a line in the matrix M, or adding the relation
E(t)þ eA(t)¼ E0þ eA0. Therefore, the analysis is independent of the
number of products.

The decoupled differential equation for A is found by
substituting Equation (23) into Equation (18):

dAðtÞ
dt

¼ �kAðtÞaðaþ bAðtÞÞb; a ¼ B0 � bA0: (26)

In most cases, reactions in the atmosphere involve two mole-
cules reacting (Morris and Myers, 1990), i.e. a ¼ 1 and b ¼ 1. In this
case, the solution to (26) is

AðtÞ ¼ A0a

A0
�
ekat � 1

�
þ ekata

: (27)

Equations (23)–(25) provide mass conservation in the system,
while Equation (27) states the positiveness of A.

We analyze the behavior of the differential equations to prove the
positiveness of the general solution of (26). We consider the two
cases a> 0 and a� 0. For the first case, a> 0, there is enough of B to
react with all of A, and A disappears before B. Provided that the initial
conditions satisfy A0 > 0 and B0 > 0, Equation (26) implies that

dAðtÞ
dt

�����t¼0
¼ �kðA0Þ

a
ðaþ bA0Þ

b
< 0;

and A is decreasing in a neighborhood of t ¼ 0.
Thus, the derivative is initially negative and changes sign at

time t if and only if A(t) ¼ 0 or a þ bA(t) ¼ 0. If a > 0, A(t)
approaches 0 before a þ bA(t) does. When the concentration A(t)
equals zero, Equation (17) only contains one reactant, the reactant
B. Moreover, when A tends to zero, the differential equation (26) is
approximated by

dAðtÞ
dt

¼ �kAðtÞaðaþ bAðtÞÞbz� ksAðtÞa; ks ¼ kab

and treated the same way as the case with one reactant in
Subsection 3.2 to conclude that A(t) is a decreasing positive func-
tion. In summary, when a > 0, the concentration A(t) decreases to
zero monotonically, while the concentration of B is given by
Equation (23), B(t) ¼ a þ bA(t) > 0.

In the second case, a � 0, the role of the reactants A and B are
exchanged. The concentration B decreases monotonically to zero
and is consumed totally according to the differential equation

dBðtÞ
dt

¼ �bk
�

1
b
ðBðtÞ � aÞ

�a

BðtÞb:

The concentration A is positive since AðtÞ ¼ 1
bðBðtÞ � aÞ � 0. In

both cases, the concentrations of all reactants are decreasing
positive functions. The concentration of the products are derived
from Equations (24) and (25),

CðtÞ ¼ C0 þ c
	

A0 � AðtÞ



and DðtÞ ¼ D0 þ d
	

A0 � AðtÞ


:

Since A is decreasing, C and D are increasing and non-negative.
3.4. Explicit solution to individual reactions:
the case of n reactants and m products

The behavior of a reaction with more than two reactants is
derived and similar properties are obtained. Consider the general
chemical reaction with n reactants Ai, i ¼ 1, ., n and m products Cj,
j ¼ 1, ., m,

a1A1þa2A2þa3A3þ.þanAn /
k

c1C1þc2C2þ.þcmCm; (28)

where a1, ., an, c1, ., cm are the stoichiometric coefficients. The
differential equations describing the evolution in time of the
concentrations are

dA1ðtÞ
dt

¼ �k
Yn
j¼1

AjðtÞaj

dAiðtÞ
dt

¼ ai
dA1ðtÞ

dt
; i ¼ 2;.;n

dCjðtÞ
dt

¼ �cj
dA1ðtÞ

dt
; j ¼ 1;.;m

implying that the conservation relations for reaction (28) are

AiðtÞ � aiA1ðtÞ ¼ A0
i � aiA

0
1; i ¼ 2;.;n

CjðtÞ þ cjA1ðtÞ ¼ C0
j þ cjA

0
1; j ¼ 1;.;m

The demonstration of the positiveness occurs by induction on
the reactants. Let AK be the first reactant that gets consumed and
goes to zero. The index K is equal to one if A1 gets consumed first;
otherwise it is given by the index such that Ak

0 – akA1
0 � Aj

0 – ajA1
0 for

all j ¼ 1, ., n. Therefore AK is a decreasing concentration, that goes
to zero, whose evolution is given by the differential equation:

dAKðtÞ
dt

z� ksAKðtÞa; ks ¼ k
Yn

j¼1;jsK

a
aj

j ; aj ¼ A0
j � ajA

0
K :

By using similar arguments than in Section 3.3, AK(t) is positive
and decreasing. When AK(t) ¼ 0, AK is consumed and the number of
reactants is reduced by one. By induction, the same arguments can
be repeated for all reactants in order of their disappearance from
the system. The solution to the chemical dynamics is therefore
positive definite and mass conservative. The concentrations of the
products are given by Cj(t)¼ Cj

0þ cj(A1
0 – A1(t)), j ¼ 1, ., m; they are

increasing by using the same arguments as in Section 3.3.

3.5. Global time splitting algorithm

The proposed SSRI algorithm computes the exact solution to
each reaction independently, within an operator splitting frame-
work, to couple all the reactions together. Strang (1968) showed
that a symmetric operator splitting leads to second order accuracy,
provided that the approximation of the solution to each step is at
least of second order. The solution to each reaction outlined in
Subsections 3.2–3.4 being exact, this method’s symmetric split is at
least second order. Note that the order of convergence of symmetric
operator splitting schemes could be higher (see e.g. Goldman and
Kaper, 1996). However, higher-order chemical integrators in
atmospheric models may not be useful since the other operators, in
particular the transport dynamics, are only second order.

For the simulations presented in Section 4, the order of opera-
tions inside the splitting scheme is as follows. The chemical reac-
tions are split up into fast and slow reactions via the reaction rates
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for each time step. Let Dt be a given time step, and t0, t1, .
a sequence of discrete times, such that tn ¼ nDt. A each time step,
the reactions are ordered according to their reactions speeds (using
a bubble sort algorithm). The fast reactions are first solved for
a time step of D/2; then sequentially from the faster to the slowest
reactions, each reaction is solved for a time step of Dt/2. Finally the
slowest reaction is solved for a time step of Dt. Then the order is
reversed and, going from the slower to the faster, the reactions are
solved again for a time step of Dt/2 to complete the symmetric split.
The fast reactions are computed twice at each time step to account
for larger transient responses.

Let c(t) be the time-dependent concentration vector of the
species in the system. Let cn denote the approximation of the
concentration vector c(t) at time tn, and let Lf and Ls represent
the operators corresponding to the fast reactions and slow reac-
tions respectively. One time step of the time-evolutive algorithm
can be represented as follows:

cnþ1 ¼ Lf

�
Dt
2

�
Ls

�
D

t

�
Lf

�
Dt
2

�
cn:

For N > 0 given, Strang (1968) implies that there exists
a constant C > 0, independent of Dt such that (second order
accuracy):

jjcN � cðtNÞjj � CðDtÞ2;

since the individual reactions are solved exactly, as shown in
Subsections 3.2–3.4.

Remark 3.3. An adaptive time integration procedure can be
established by checking the convergence of the splitting algorithm.
More precisely, for a given relative tolerance 3>0, the time increment
Dt is decreased if jjLf ½Dt

2 �Ls½Dt�Lf ½Dt
2 �c

n � Ls½Dt
2 �Lf ½Dt�Ls½Dt

2 �c
njj � 3jjcjj. In

an adaptive scheme, the relative tolerance ensures an accurate
solution, independently of the splitting among chemical reactions.

The present algorithm (SSRI) inherits mass conservation and
positive definiteness at each time step since the solution to each
chemical reaction has such properties. The proposed solution splits
according to the chemical reactions, instead of the chemical
species. Since atmospheric models tend to have more chemical
reactions than chemical species, this algorithm might be compu-
tationally expensive when used as a standalone integrator. For
better efficiency, it can be inserted into a host integrator, like
CHEMEQ2 (Mott et al., 2000), RODAS-3 (Sandu et al., 1997a), or
ROS-2 (Verwer et al., 1999), and be invoked to correct negative
concentrations produced by the host model. Although the
proposed algorithm SSRI may be used inside an host integrator, it is
used as a standalone solver in the sequel in order to fairly evaluate
its performance. The corresponding numerical results are pre-
sented in the next section.
4. Numerical experiments

4.1. Benchmark example

In order to validate the proposed algorithm, let us first consider
the simple system (1)–(3):

NO2þhv/
k1 NOþO k1¼1:289�10�2�s�1�

OþO2/
k2 O3 k2¼8:018�10�17�molec�1cm3s�1�

O3þNO/
k3 NO2þO2 k3¼6:062�10�15�molec�1cm3s�1� (29)
This set of chemical reactions corresponds to the following
system of differential equations:

dNO
dt
¼ k1NO2 � k3O3NO

dNO2

dt
¼ �k1NO2 þ k3O3NO

dO
dt
¼ k1NO2 � k2OO2

dO3

dt
¼ k2OO2 � k3O3NO

dO2

dt
¼ �k2OO2 þ k3O3NO ð30Þ

We consider the initial condition [NO0, NO2
0, O0, O3

0,
O2

0] ¼ [8.725$108, 2.24$108, 6.624$108, 5.326$1011, 1.697$1016]. All
concentrations are in [molec cm�3]. The exact solution to (30) is not
known explicitly. In order to validate the SSRI algorithm, the
solution of (29) and (30) is compared with classical integrators such
as the explicit Runge-Kutta method of order 4 (RK44), and the two-
steps backward differentiation formula (BDF-2), see e.g. Hairer and
Wanner (1996).

Fig. 1 illustrates the stability of the three integrators (RK44, BDF-2
and SSRI) for various (large) values of the time step Dt. It visualizes the
concentrations of NO2 and O3 respectively. For small time steps
(Dt ¼ 1 [s]), all methods are stable and provide similar results. For
larger time steps (Dt¼ 100 [s]), the solutions obtained with the RK44
and BDF-2 methods grow without bound (as alreay stated in (Sandu
(2001))), while the one obtained with the SSRI remains bounded.

Fig. 2 visualizes only the solution of the SSRI algorithm for
various time steps. Keeping in mind that reasonable time steps in
the field of atmospheric chemical reactions are around 1000 [s], it
shows that the proposed algorithm provides a bounded, although
oscillating, solution, that may be incorporated into global 3D
atmospheric simulation models.

Finally the convergence of the SSRI algorithm is studied. Since the
exact analytical solution of (29) and (30) is not known explicitly, we
consider the solution obtained by the BDF-2 scheme on a time interval
of 1 h with Dt¼ 0.01 [s] as the reference solution. Fig. 3 visualizes, on
a log–log plot, the maximal error between the reference solution and
the solution obtained with SSRI when the time step decreases. Both
the error for the concentrations of NO2 and O3 behave approximately
likeOðDt2Þ, which confirms that SSRI is second order accurate.

Numerical experiments on this simple system confirm the second
order accuracy of the proposed scheme, as well as its good stability
properties. A more complicated, stringent, system is considered in the
following.

4.2. Stringent test case

The new method is evaluated on a real chemical system, that is
described in details in Sandu (2001). This stringent test case consists
of integrating the following set of stratospheric chemical reactions,
by using large fixed time steps of 15 and 30 min respectively.

O2 þ hv /
k1 2O k1 ¼ 2:643� 10�10s3 �s�1�

Oþ O2 /
k2 O3 k2 ¼ 8:018� 10�17�molec�1cm3s�1�

O3 þ hv /
k3 Oþ O2 k3 ¼ 6:120� 10�4s

�
s�1�

O3 þ O /
k4 2O2 k4 ¼ 1:567� 10�15�molec�1cm3s�1�
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The results for ROS-2P and SSRI are nearly identical. Neither exhibits negative
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the simulation.
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the simulation.
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O3 þ hv /
k5 O1D þ O2 k5 ¼ 1:070� 10�3s2½s�1�

O1D þM /
k6 OþM k6 ¼ 7:110� 10�11½s�1�

O1D þ O3 /
k7 2O2 k7 ¼ 1:200� 10�10½molec�1cm3s�1�

O3 þ NO /
k8 NO2 þ O2 k8 ¼ 6:062� 10�15½molec�1cm3s�1�

NO2 þ O /
k9 NOþ O2 k9 ¼ 1:069� 10�11½molec�1cm3s�1�

NO2 þ hv /
k10 NOþ O k10 ¼ 1:289� 10�2s½s�1�

NOþ O /
k11 NO2 k11 ¼ 1:0� 10�8½molec�1cm3s�1�

where M ¼ 8.120E þ 16[molec cm�3] is the atmospheric number
density, and s ¼ s(t) is the normalized sunlight intensity given by:

sðtÞ ¼

8<
:

1
2
þ1

2
cos
�

p

����2t�TR�TS

TS�TR

����
�

2t�TR�TS

TS�TR

��
; if TR� t�TS

0; otherwise;

where we assume that the sun rises at TR ¼ 4.5 (4:30 am) and
disappears at TS ¼ 19.5 (7:30 pm), giving 15 h of light per day, with
a maximum intensity at 12:00 pm (noon). The coefficient s(t) is
adimensional and between 0 and 1 for all times t (Sandu (2001)).

Remark 4.1. The characteric time scales of such chemical systems
arising in atmospheric chemistry range from 10�4 s for the fastest
reactions to several weeks or months for the slowest ones, i.e.
typically the O2 species.

The simulation starts at 12:00 pm (noon) and runs for 72 h. In
order to quantify the mass conservation properties of the solvers,
the following mass conservation relations are computed:

aN : [ NO0
2 D NO0

aO : [ NO0 D 2NO0
2 D O1D;0 D 2O0

2 D 3O0
3 D O0;
where the superscript 0 indicates the quantities at the initial time.
The norm chosen to measure the mass conservation property of the
algorithm is

MC¼ jNO2þNO�aNjþjNOþ2NO2þO1Dþ2O2þ3O3þO�aOj
NO2þNOþNOþ2NO2þO1Dþ2O2þ3O3þO

:

(31)

This chemical system is difficult to solve when considering large
time steps, since a stable integrator is required to accommodate the
wide range of eigenvalues of the system. In addition, the reaction
NOþO/NO2 is called a non-correcting reaction, in which the
species NO and O are destroyed without bound, permitting NO2 to
grow indefinitely. As a result, the analysis of numerical tests pre-
sented here focuses on NO2.

Large time steps are commonly used in stratospheric chemical
simulations. However, most solvers (like BDF-2, RODAS-3, ROS-2,
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Fig. 6. SSRI approximation of the concentration of NO2 with a time step of 15 [mn].
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and CHEMEQ2) yield meaningless results for a time step of 30 min.
In particular, NO2 concentrations are divergent for all mentioned
schemes; according to the current literature, this instability is
largely due to oscillations and negative values of the concentrations
(Sandu, 2001).

Stability can be achieved by clipping the negative concentra-
tions and setting them to zero. Clipping, however, is not mass
conservative. To avoid violations in the mass conservation, Sandu
(2001) proposed a projection method that projects the negative
concentration into positive concentrations via an optimization
problem under a mass conservation constraint. However, such
projection methods may be computationally expensive, and, either
projection or stabilization methods require a host integrator since
they are not directly based on chemical dynamics. Sandu (2001)
showed that the integrator ROS-2 with the positive projection
(denoted here as ROS-2P) produce the most desired result. Taking
the solver ROS-2P as a reference, we compare it to the Split Single
Reaction Integrator (SSRI) presented in this article.
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Fig. 7. SSRI approximation of the concentration of NO2 with a time step of 30 [mn].
The large time step provides a stringent test for the stability and accuracy of the
algorithm. SSRI captures the general behavior of cyclic ultra violet radiation. More
importantly, SSRI is stable with a relative error less than 2%. All other tested schemes
(BDF2, RODAS3 and CHEMEQ2) are unstable and not plotted.
The reference solution is computed by using a relative time step
integration using SSRI and ROS-2P with a relative error of 3 ¼ 10�4

(see Remark 3.3). The solution computed with both integrators are
almost identical and the approximation of the concentrations of
NO2 and O3 is presented in Figs. 4 and 5.

It is interesting to note that, with a variable time step integra-
tion, ROS-2P does not use any projection since ROS-2 does not
accrue any negative mass. However, very small time steps are
needed to provide such an accurate integration. In particular, a time
step of 10�5 s is needed at the beginning of the simulation for both
SSRI and ROS-2P to capture the rapid transient region. Negative
concentrations only occur with sufficiently large time steps.

When using fixed time steps of 15 and 30 min, a stringent test
case is obtained. For a fixed time step of 15 min, all non-positive
definite methods (ROS-2, BDF, RK44 and RODAS3) are unstable,
while SSRI is stable. Fig. 6 visualizes the stable evolution of NO2.

For a fixed time step of 30 min, SSRI still produces stable results.
Fig. 7 visualizes the evolution of NO2, and shows that SSRI still
captures the general behavior of cyclic ultra violet radiation, while
being stable with a relative error less than 2%. All other methods,
including the projected ROS-2P, are unstable and grow without
bound, and are not represented. Naturally, when the time step
increases, SSRI’s error grows (due to the splitting error) but the
algorithm still maintains positive definiteness. Finally Fig. 8 visu-
alizes the conservation of the mass MC defined by (31); it shows
that the SSRI is exactly mass conservative, up to round-off errors,
and allows to conclude to the strong stability of the SSRI scheme.
5. Conclusions

A novel approach for the integration of chemical dynamics has
been presented in this article. It provides a positive definite, mass
conservative, and stable numerical solution. This new method is
called Split Single Reaction Integrator (SSRI). It relies on an operator
splitting approach to decouple chemical reactions and solve each
reaction exactly. The exact solutions for each chemical reaction are
symmetrically combined using the Strang operator splitting
approach to compute the solution of the entire chemical mechanism.

SSRI is easy to implement because it only depends on the
number of reactants; it is even easier when chemical systems have
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only one or two reactants in each chemical reactions as it is usually
the case in most atmospheric systems.

Numerical results have confirmed that SSRI is a second order
accurate algorithm with excellent stability properties for large fixed
time steps. They have also shown that SSRI (as a standalone solver)
is accurate when used as a variable step integrator. In particular, it
provides stable results for a stringent test case involving large time
steps, when all other integrators tested (BDF, RK44, ROS-2, RODAS3,
CHEMEQ2 and projected positive definite ROS-2) are unstable.

The chemical dynamics operator being usually the operator that
suffers the most from a lack of mass conservation and/or posi-
tiveness in atmospheric 3D solvers, SSRI provides an efficient
alternative method to ensure that the solution to consistent
chemical dynamics is mass conservative and positive definite.
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