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Abstract: Naphthalene is the simplest and most abundant polycyclic aromatic
hydrocarbon (PAH) in California fuels, with concentrations of up to 2,600 mg
L™ in gasoline and 1,600 mg L™ in diesel fuel. In this work, naphthalene
emission factors for gasoline and diesel vehicles are combined with an
activity-based automobile inventory to characterise anthropogenic naphthalene
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emissions in the South Coast Air Basin of California (SoCAB). A
three-dimensional air quality model is used to examine transport and chemical
reaction losses of naphthalene in the SoCAB. Inclusion of naphthalene
emissions from on-road gasoline and diesel vehicles was found to increase
modelled SOA growth by up to 10%. Hence, reductions of naphthalene from
both gasoline and diesel fuels may be an effective means of reducing the
emissions of an important SOA-forming precursor to the atmosphere of large
urban centres with characteristics similar to the SOCAB. The implications of
these findings are discussed.

Keywords: air quality modelling; environmental pollution; naphthalene;
photochemistry; secondary organic aerosol; SOA; gasoline and diesel
emissions factors.
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1 Introduction

Atmospheric aerosols produce severe health effects, affect radiative forcing making them
important to climate change, and influence environmental chemistry through uptake and
transport of ambient trace gases and through augmentation of photolysis (IPCC, 2001,
2007). Secondary organic aerosols (SOAs) can comprise a significant fraction of the total
atmospheric organic particulate mass (Jimenez et al., 2009; Kroll and Seinfeld, 2008).
Additionally, inhalation of SOAs has been associated with adverse health effects
(Baltensperger et al., 2008).

There has been extensive development in models of SOA formation which is
comprehensively summarised in Kroll and Seinfeld (2008) and Kanakidou et al. (2005).
In short, atmospheric oxidants such as ozone (Oj;), hydroxyl radical (OH), and nitrate
radical (NO;") react with volatile organic compounds (VOCs) to form reduced volatility
products. The semivolatile and non-volatile products further react through multiple steps
producing oxidised products with decreased volatility and/or increased solubility. The
decreased volatility process leads to gas-to-particle partitioning which has been verified
with a wide range of experimental results (Odum et al., 1996; Seinfeld and Pankow,
2003). Phase partitioning depends on a number of atmospheric conditions including
relative humidity, temperature, and local aerosol composition (Chang et al., 2010).
However, SOA measurements are typically one to ten times larger than model predictions
(Volkamer et al., 2006), indicating additional SOA formation pathways that remain
unaccounted in current models (Kroll and Seinfeld, 2008). More recently Ahmadov et al.
(2012) implemented a new SOA parameterisation based on the volatility basis set (VBS)
in a regional air quality model WRF-CHEM which reduced the uncertainty of SOA
model predictions. Donahue et al. (2012) discussed the use of a two-dimensional
volatility-oxidation space (2-D-VBS) to describe SOA formation from wood smoke and
dilute diesel-engine emissions.

Several studies have suggested the importance of polycyclic aromatic hydrocarbons
(PAHs) in the production of SOAs (Chan et al.,, 2009; Kautzman et al., 2010;
Odum et al., 1997). The most abundant atmospheric PAH in the SOCAB is naphthalene
(Eiguren-Fernandez et al., 2004; Lu et al., 2005). Furthermore, it has been shown that
naphthalene is highly reactive with atmospheric oxidants forming reduced-volatility
products (Sasaki et al., 1997). Based on extensive studies performed in the Caltech
dual chambers, Chan et al. (2009) reported that SOA yields from naphthalene, 1-
methylnaphthalene (1-MN), 2-methylnaphthalene (2-MN), and 1,2-dimethylnaphthalene
(1,2-DMN) are on the order of 25%-45% under high-NOx conditions, and 58%-73%
under low-NOx conditions (NOx = NO + NO,). Naphthalene is a health concern because
exposure can cause hemolytic anemia that can be passed from a pregnant woman to her
unborn child, tumours, and damage to the respiratory system (ATSDR, 2005). As a result,
the US Department of Health and Human Services classifies naphthalene as a carcinogen.

Currently, there is significant uncertainty associated with naphthalene emission
factors of gasoline and diesel vehicles. Emissions factors tend to vary with season due to
changes in temperature and relative humidity, fuel composition, and vehicle fleet
composition. This study presents a first step at examining on-road vehicular emissions of
naphthalene that considers the best estimates of averaged emissions factors to date. The
total naphthalene emissions used in this study compare well with those reported by
Lu et al. (2005) (Table 1). Nevertheless, uncertainty in naphthalene emissions from diesel
sources can be as high as a factor of two.
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Table 1 Daily outdoor naphthalene mobile emissions (kg) in the SOCAB

Current study Lu et al. (2005)
Light-duty gasoline activity 790 (42%) 745 (43%)
Heavy-duty diesel activity 289 (15%) 160 (9%)
Slow cure asphalt 230
Consumer products 254
Mineral spirit and industrial sources 331

Naphthalene is produced primarily by incomplete combustion processes (Lu et al., 2005;
ATSDR, 2005). Additionally, Lin et al. (2007) found naphthalene to be one of the most
prominent PAHs emitted from gasoline automobiles. Aromatic hydrocarbons, including
PAHs, are released into the atmosphere principally during incomplete combustion and
account for approximately 20% of non-methane organic hydrocarbons in urban air
(Nishino et al., 2008). Engine exhaust has been suggested to be an important missing
source of SOAs (Bahreini et al., 2012).

Bahreini et al. (2012) concluded that gasoline emissions dominate over diesel
emissions in the formation of SOA mass, and suggested that a decrease in the
naphthalene content of gasoline may reduce SOA formation in the SOCAB. Contrasting
with these conclusions, Gentner et al. (2012) suggested that diesel exhaust is seven times
more efficient at forming organic aerosol than gasoline exhaust, and that, while both
sources are important for air quality, diesel is responsible for 65% to 90% of vehicular-
derived SOA, with substantial contributions from aromatic and aliphatic hydrocarbons,
depending on a region’s fuel use.

Figure1  Map of the SOCAB showing the 5 km x 5 km UCI-CIT air quality model domain as
dashed line
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This study applies a computational approach to predict the SOA production from
roadway (on-read vehicles only, off-road sources not included) naphthalene emissions.
An activity-based inventory of on-road naphthalene emissions is spatially and temporally
allocated within the South Coast Air Basin of California (SoOCAB). Atmospheric transport
is predicted with the University of California, Irvine-California Institute of Technology
(UCI-CIT) model which includes the latest SOA modules (Chang et al., 2010).
Partitioning of naphthalene from vapour to particle phase is modelled using
absorptive partitioning theory (Pankow, 1994) with partitioning parameters derived from
chamber measurements (Shakya and Griffin, 2010). The study domain is shown in
Figure 1. Vapour-phase and particle-phase naphthalene atmospheric samples from
Eiguren-Fernandez et al. (2008) are used as ground-truth, to evaluate model predictions
of May 29 through June 6, 2005. The following sections describe the methodology of
modeling the meteorological period, atmospheric transport, and phase partitioning,
followed by a presentation and discussion of results.

2 Methods

2.1 Meteorological modeling

The complex photochemistry naturally occurring in the troposphere is driven largely by
prevalent meteorological conditions. The advanced research weather research and
forecasting model (WRF-ARW; Skamarock et al., 2005) is used to generate the
meteorological variables wind speed, relative humidity and temperature, pressure, mixing
height and cloud cover. The National Centres for Environmental Prediction (NCEP) final
operational global analysis 1° x 1° grids data are used for WRF initial and boundary
conditions. Land use data is taken from the United States geological survey (USGS).
WREF is currently the primary mesoscale model used to drive air quality simulations
(Klausmann et al., 2003).

Summer in Southern California is hot with temperatures reaching 38°C (100°F).
During the day, winds are predominantly west-east from the ocean towards inland, with
reverse nightly winds moving east-west. WRF meteorological predictions are evaluated
with the US Environmental Protection Agency (EPA) atmospheric model evaluation tool
(AMET). AMET evaluates the WRF meteorological predictions using observational data
from eight National Oceanic and Atmospheric Administration (NOAA) administered
sites in SOCAB, shown in Figure 1.

2.2 Photochemical modeling

The UCI-CIT regional photochemical model (Cohan et al., 2008; McRae and Seinfeld,
1982) is used to predict atmospheric transport of naphthalene in the SoCAB during
May 29 through June 6, 2005. The model characterises the domain (Figure 1) with
5 x 5 km grid cells which spans 0 to 1100 m in height over five terrain-following vertical
layers. Ground layer (0-38 m) results are the focus of the present investigation. The
UCI-CIT model employs an expanded version of the Caltech atmospheric chemical
mechanism (Griffin et al., 2002). The chemical mechanism has been thoroughly tested to
model urban and rural photochemistry as well as daytime and night-time reactions
(Griffin et al., 2002; Jiminez et al., 2003).
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As a first step to addressing troposphere transport of naphthalene, this study focuses
on modeling the major atmospheric sinks and naphthalene gas-to-particle partitioning.
Reaction with OH radicals is the biggest atmospheric loss mechanism for aromatic
hydrocarbons (Nishino et al., 2008). Naphthalene and OH react to form over 100 unique
products including 1,2-naphthoquinone, oxygenated indenes and benzopyrones (Lee and
Lane, 2009). Additionally, NO;™ and O; play an important role in atmospheric reactions
of naphthalene (Atkinson, 1994; Sasaki et al., 1997). The reaction rates used to model the
major naphthalene atmospheric sinks are shown in Table 2. The oxidants shown in
Table 2 react with naphthalene to form a reduced volatility product. The activity-based
emission inventory of the year 2005 developed by SCAQMD (SCAQMD, 2007) is used
to account for atmospheric oxidant levels.

Table 2 Rate constants (30°C) for reactions with naphthalene

Reactant Rate (em® molecule s) Source

OH 2.39E-11 Atkinson (1986)
O; 2.00E-19 Atkinson et al. (1984)
NO; 3.65E-28 * [NO,]* Atkinson (1991)

Note: *NO, in molecule cm .

Decreased volatility, or increased solubility, allow for the formation of SOA from gas-
particle partitioning (Pankow, 1994; Odum et al., 1996). The absorptive partitioning
theory developed by Pankow (1994) defines an equilibrium partitioning coefficient:

P

=i (1)

P
where G is the mass concentration of the semivolatile species in the gas phase, P is the
mass concentration of the semivolatile species in the particle phase, and M is the mass
concentration of the total absorbing particle phase (Kroll and Seinfeld, 2008). Odum et al.
(1996) related the SOA yield (mass of aerosol formed per mass of reacted hydrocarbon)
with a collection of semivolatile constituents

o, Kp
Y=M) ———— 3
Zi1+MKRi @

where o; is the mass-based stoichiometric coefficient for product i, and Kp; is its
equilibrium absorptive partitioning coefficient between the gas phase and the absorbing
condensed organic medium (Pankow, 1994). The UCI-CIT model uses the two-product
approach suggested by Odum et al. (1996) where semi-volatile gas-phase species are
partitioned into up to two SOA products.
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The partitioning of gas-phase naphthalene into the particle-phase was recently
measured by Shakya and Griffin (2010) in a chamber study. Their reported equilibrium
partitioning (Kyap; = 0.852, Kyap, = 0.003 m3ug’1) and stoichiometric coefficients
(o = 0.167, a, = 0.308) are used to predict the partitioning of an oxidised naphthalene
product into two distinct naphthalene aerosols. Atmospheric partitioning parameters may
vary dynamically as the ratio of parent hydrocarbon to NOx changes with time and drives
the hydrocarbon oxidation. Chan et al. (2009) examined high and low NOyx regimes
for SOA yields. However, only high-NOx partitioning parameters were reported for
naphthalene, which were comparable to the values reported by Shakya and Griffin
(2010).

2.3 Engine exhaust emissions

VOCs in the SOCAB are mainly emitted by anthropogenic sources with vehicular traffic
accounting for about 60% of the total VOC ROG emissions (Cox et al., 2009).
Naphthalene emitted from incomplete combustion is predominantly in the vapour phase
(Mastral et al., 2000). Lu et al. (2005) examined the influence of naphthalene from
vehicle emissions in Southern California using vehicle miles travelled data. Since that
first study, there have been few examinations to update naphthalene emissions
factors based on current fuel composition and vehicular consumption (Shah et al., 2005;
Chen et al., 2006). This study uses measurements obtained in the Caldecott Tunnel of
Northern California during the summer of 2004 and winter of 2005 (Eiguren-Fernandez
and Miguel, 2012) to compute fuel-based naphthalene vapour emissions factors for
gasoline and diesel vehicles.

The Caldecott Tunnel samples were analysed by HPLC-fluorescence, a technique that
does not allow quantification of alkylnaphthalenes. Emission factors are calculated by
relating total carbon emissions in the tunnel to the carbon content of fuels (Kirchstetter
et al., 1999; Miguel et al., 1998; Marr et al., 1999):

ANAP
Eo =10 ——" o 3
NAP [ACO+AC02] ¢ ®

where Ey,p is the mobile naphthalene emission rate in pg per kg of fuel burned, ANAP is
the change in naphthalene concentration measured in the tunnel above background levels
(ng m™), ACO, and ACO are the increases in the concentrations of CO, and CO,
respectively, above background levels (ug of C per m?), and o is the carbon weight
fraction of the fuel. To calculate the diesel emission factors, it is necessary to exclude
light-duty vehicle contributions to total pollutant concentrations. The naphthalene diesel
vehicle contribution is calculated by subtracting the gasoline vehicle contribution
assuming gasoline and diesel vehicles emit comparable amounts of CO per unit distance
travelled (Kirchstetter et al., 1999; Miguel et al., 1998; Pierson et al., 1996):
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“4)

ANAP, = ANAP —ACO(I—fD)(ANAPj
2

ACO

where ANAPp is the diesel naphthalene contribution, fj, is the fraction of diesel traffic,

and (AAl\gg )2 is the ratio of gasoline contributed naphthalene to CO measured from a

tunnel bore that
is restricted to gasoline vehicles (bore 2 of the Caldecott tunnel, in Berkeley)
(0.06 F 0.02). The diesel CO, contribution is calculated using traffic counts and the fuel

economies of light-duty gasoline vehicles and heavy-duty diesel trucks

ACO, _ fyUppp@p (5)
ACO,  frUpppoy +(1-f ) Ugpaog

where CO,,p is CO, from diesel traffic, U is the fuel consumption rate, and the subscripts
D and G denote diesel and gasoline, respectively. Equations (3) through (5) are used to
calculate naphthalene vapour mobile emission factors for gasoline and diesel vehicles of
1,200 + 375 and 3,357 + 3,618 (ug of naphthalene vapour per kg of fuel), respectively.
Additional discussion about the data and methodology used to estimate naphthalene
roadway emission factors is presented in Eiguren-Fernandez and Miguel (2012) and
Kirchstetter et al. (1999).

Total mobile naphthalene emissions, EMISyap, within SoOCAB are calculated by
summing the diesel and gasoline contribution

EMIS, s = EGFC, +EpFC,, (6)

where FC is the fuel consumption. California vehicle fuel consumption for gasoline and
diesel vehicles is obtained from the US Department of Transportation Federal Highway
Administration (FHA, 2012). The California Air Resources Board (CARB) Emission
Factor Model (EMFAC) is used to separate county fuel consumption from state fuel
consumption. Daily naphthalene emissions within the (SOCAB) are shown in Table 1.

This study uses an activity-based emission inventory from the year 2005 developed
by the South Coast Air Quality Management District (SCAQMD) (SCAQMD, 2007) in
order to allocate spatially and temporally naphthalene mobile emissions. This emissions
inventory was used by Ensberg et al. (2010) to evaluate the impact of electronically
photo-excited NO, on air pollution in SOCAB. Mobile CO gasoline and diesel emissions
from the SCAQMD inventory are used as a surrogate to determine roadway activity

EMISy,p (%,t) = EGFCG(
_ (7
EMIS,, (X, t)]

+ELFC
P D( DailyCO,,
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where X is position, t is time, EMIS,,,(X,t) are the spatially and temporally resolved

naphthalene vapour emission rate [kg hr™'], DailyCO is the total daily emissions of CO,
EMIS ., (X,t) are the spatially and temporally resolved CO roadway emissions from

SCAQMD inventory, and the subscripts G and D indicate the contribution from gasoline
and diesel vehicles, respectively. Naphthalene emissions are resolved to a 5 x 5 km
spatial and 1-hr temporal resolution for generic summer week and weekend days. Daily
naphthalene emissions are shown in Figure 2 with notable emissions along interstate 5
and highway 91. Model resolution is too coarse to discern localised roadway traffic
emissions. Diurnal traffic patterns are distinctively different from weekday to weekend.
Equation (5) is used to predict naphthalene emissions for a typical weekday and weekend
day using CO emissions from a Thursday for weekday emissions calculations, and a
Sunday for weekend emissions calculations.

Figure 2 24-hr naphthalene roadway emissions

0 2 4 6 8 0 1 14
Naphthalene (kg day-1 grid-1)

3 Results and discussion

A comparison of WRF-ARW model results and NOAA observations considering 1-hr
wind speeds and temperatures is shown in Figure 3. Temperature is well replicated by
WRF with a mean absolute error of 1.9 K and a correlation of 87%. Temperature is
under-predicted above 27°C (80°F). Wind speed is moderately replicated by WRF with a
mean absolute error of 1.7 m/s and a correlation of 63%. WRF predicted high wind speed
gusts do not match up as well in space and time with observations at lower speeds.
Comparison with NOAA observed wind direction shows a mean absolute error of 460.
UCI-CIT model results based on these simulations may tend to over-predict the amount
of atmospheric dispersion and under-predict the amount of photochemical production
leading to reduced concentrations (Venkatram, 2004).
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Figure 3 WRF modelled vs. (a) observed surface temperatures and (b) wind speeds
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The naphthalene on-road emission inventory is superimposed onto the SCAQMD
activity-based emission inventory to produce an updated emissions inventory of SoOCAB
for spring 2005. Figure 4 shows model predictions of naphthalene from June 2 through
June 6. Figure 4 illustrates the spatial variation of predicted naphthalene and naphthalene
derived particles, as well as the variation between week and weekend days. Secondary
aerosols can be formed from a number of additional gas phase species including NHj,
SO;, HCI and peroxyacyl nitrates. Therefore, aerosol percent increase from naphthalene-
derived SOAs is calculated by comparing 1-hr aerosols from model simulations of the
2005 SCAQMD emission inventory with and without naphthalene roadway emissions.

Figure4  UCI-CIT model predictions of naphthalene roadway emissions and naphthalene
derived particles starting on Thursday June 2, 2005

Roadway Emitted Naphthalene Aerosol Increase from Naphthalene Derived Particles

Saturday Friday Thursday
6/4/2005 6/3/2005 6/2/2005

Sunday
6/5/2005

) " ® 0 ' 2 i . 5
24-hr Naphthalene Vapor (ng m3) 24-hr Naphthalene Derived Particles (ng m-3)

Figure 4 illustrates the sensitivity of model results to meteorology and day of week
emissions. While nitric oxide emissions decrease from the weekday to weekend, ozone
can increase during the weekend (Cohan et al., 2008) leading to an increase in hydroxy
radicals. Generally, there are more naphthalene-derived SOAs during the weekend than
during weekdays due an increase in OH-initiated naphthalene vapour oxidation.

Naphthalene vapour from roadway emissions is concentrated around freeway
adjacent urban communities such as Los Angeles, Long Beach and Riverside.
Naphthalene-derived SOAs are formed during atmospheric transport and hence increase
downwind of major roadway sources, specifically east and south of Riverside in the
Inland Empire. The mass of particles derived from naphthalene roadway emissions in
SoCAB can be as high as 20% in the riverside area, although it is less than 1% in other
areas. As a result, the amount of modelled SOAs produced from naphthalene roadway
emissions is more significant in Riverside than in other areas. While the SOA yields from
the alkylnaphthalenes 1-MN and 2-MN are higher than from naphthalene (Chan et al.,
2009), the concentration of naphthalene alone in California gasoline represents 82% of
the content of naphthalenes and alkylnaphthalenes (Gentner et al., 2012). Thus, inclusion
of the alkylnaphthalenes precursors would increase the SOA concentrations by less than
20%.
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Figure 5  24-hr naphthalene vapour average (diamond) and standard deviation (error bars)
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Jia and Batterman (2010) measured outdoor vapour phase naphthalene in the range of
20 to 310 ng m™ for typical urban areas, and lower in rural and remote areas. Figure 5
shows a comparison of 24-hr naphthalene vapour from model predictions for May 29
through June 6, 2005, and observations from a variety of time periods in SoOCAB; the
Children Health Study I data are from June 2001 through July 2002, the Children Health
Study II data are from August 2002 through October 2003, University of California,
Riverside (UCR) data are from July 2003 through March 2004, and Diamond
Bar data are from August 2004 (Eiguren-Fernandez et al., 2004, 2007, 2008; Miguel et
al., 2004, 2005; Lu et al., 2005). Naphthalene vapour follows a seasonal pattern with
higher concentrations in winter than summer (Eiguren-Fernandez et al., 2004;
Eiguren-Fernandez et al., 2007; Jia and Batterman, 2010). Model results only consider a
spring period. Measurements collected during Children Health Study I and II spanned
three seasons and hence exhibit a large range. Additionally, naphthalene emissions from
on-road gasoline and diesel vehicles account for an estimated 53% (Lu et al., 2005) of the
total naphthalene emissions to the SoCAB, leaving 47% of naphthalene outdoor
emissions unaccounted in the current study. Naphthalene from moth repellent has been
reported as the second largest exposure source after combustion (Jia and Batterman,
2010; National Toxicology Program, 2000). The correlation between observed and
modelled naphthalene vapour is poor with model results systematically under predicting
observations due to modelling only the spring season and accounting for only part of the
entire naphthalene emission inventory in the SoCAB. The modelling predictions
presented here represent a lower bound in the SOA production from napththalene.
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Figure 6  4-hr concentrations (ng m ) of modelled naphthalene vapour and secondary aerosol
formation from naphthalene vapour are shown in red and blue lines, respectively
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Figure 6 shows the temporal variation of modelled naphthalene and naphthalene derived
particles for select locations across SOCAB. Results indicate an increase in naphthalene
derived particles moving inland from Diamond Bar to Riverside which is consistent with
measurements from Eiguren-Fernandez et al. (2008). Long Beach and Anaheim exhibit
similarly low levels of naphthalene derived particle levels. Peaks in vapour phase
naphthalene concentration are not paired in space and time with peaks in naphthalene
derived particles because of transport occurring as vapour phase naphthalene under goes
chemical transformation to produce SOAs. Hence, naphthalene derived particle peaks
tend to lag in time and be downwind of vapour phase naphthalene peaks.

The 1-hr naphthalene-derived SOA concentrations are up to 20 times the 24-hr
concentrations. Naphthalene concentrations from model prediction show high diurnal
activity over the SOCAB. Low nocturnal mixing heights facilitate accumulation of local
and regional sources (Pournazeri et al., 2012). Results are consistent with previous
studies that found concentrations tend to peak in the night and morning, and are lowest in
the afternoon (Lu et al., 2005; Park et al., 2002). Although air quality in California has
been improving over the last several years, all major urban areas of California exceed the
state annual PM,s standard of 12 pg per m’ (ARB 2011). Reduction of the mass
concentration of SOA in urban centres, and the attended reduction of PM, s levels, via
reduction of SOA precursors such as fuel naphthalene and alkylated naphthalenes, will
have a positive impact on policies to improve the control air quality that protect public
health. Recent results (Heald et al., 2008) suggest that SOA will become an increasingly
important fraction of the global aerosol burden, affecting both climate and air quality.
Therefore, anthropogenic control of SOA formation precursors may constitute an
important and effective regulator of global climate.

4 Conclusions

The US EPA recently promulgated a new PM, s standard that increases public safety by
lowering the allowable annual aerosol content from 15 pg/m’® to 12 pg/m’. The new
stringent regulation will require more state implementation plans for non-attainment areas
that may have been previously considered in attainment. The need to well characterise the
aerosol environment has increased and this study has confirmed that NAP chemistry
plays an important role in the overall SOA budget (Chan et al., 2009; Kautzman et al.,
2010; Odum et al., 1997). Additionally, new models are being developed which
incorporate a VBS to account for SOA formation (Donahue et al., 2012). Incorporating
naphthalene heterogeneous chemistry into a model that uses VBS could have an even
bigger impact than predicted in the current study due to increased aerosol production
from VBS.

Several experimental studies have found higher aerosol yields for naphthalene than
reported by Shakya and Griffin (2002) (Chan et al., 2009; Kleindienst et al., 2012). A
higher aerosol yield would lead to more aerosol production from gas-phase naphthalene,
indicating this study is likely conservative in its prediction of SOAs formed from on-road
naphthalene.

Predicted atmospheric transport of naphthalene vapour from roadway emissions falls
within range of concentrations observed. Results indicate that the inclusion of
naphthalene increases modelled SOAs in SoOCAB by roughly 1%-10%. Diamond Bar is
adjacent to considerable roadway traffic from California highways 57 and 60 and
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interstate 10. Hence, transport of naphthalene roadway emissions correlate better in
Diamond Bar than in less highway accessible regions such as riverside.

Atkinson and Arey (2009) estimate the half-life naphthalene with respect to OH is
5.4 hours. Kinetic activity is concurrent with atmospheric transport, fumigating reaction
products in the Inland Empire, near Riverside, whose toxicity, and concentration, we can
only guess. The effect of air pollution on school children lung development from
10 to 18 years of age was established by the Gaudeman et al. (2004) which found a linear
relationship between distance from the ocean (inland towards riverside) and a decrease in
the rate of lung growth. There are additional major naphthalene emissions not being
accounted for in our model such as slow cure asphalt and moth repellent. Lim et al.
(2007) and Marr et al. (1999) found that fuel composition affect PAH engine exhaust
emission rates.

Atmospheric NOx (NOx = NO + NO,) levels can affect SOA yields (Chan et al.,
2009) which vary in modelled atmospheric conditions from high to low. Additionally, in
general, smog chamber studies consider the photo-oxidation of single reactive organic
gas species while, in the ambient environment, the atmospheric composition includes a
large number and variety of reactive organic gases, condensed primary and secondary
species.

A novel technique to estimate naphthalene emissions from motor vehicles based on
fuel consumption is presented which could be used to predict naphthalene emissions in
other regions using different emissions data. Future modeling work should address the
influence of SOA boundary conditions, changes in seasonal emission factors, and include
SOA producing alkylnaphthalenes. However, there is little empirical evidence to validate
naphthalene generated SOA predictions. This works present a first step to
characterisation of naphthalene derived aerosol in an environmental model which is
needed to understand the implications in human health and climate change.

Considering that naphthalene is the predominant PAH in both fuels, with
concentrations of up to 2,600 mg L™ in gasoline and 1,600 mg L™ in diesel fuel,
reductions of naphthalene from gasoline and diesel fuels may be an effective means of
reducing the emissions of an important SOA-forming precursor to the atmosphere of
large urban centres.
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