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� A statistical inference method is developed for natural gas burner emissions data.
� The method is built to compensate for the typically small sample size.
� The method integrates multiple measures of quantified goodness of fit.
� The method provides a means to evaluate and report confidence of the result.
� Estimates are developed for changes in emissions as functions of Wobbe Number.
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Natural gas is a ubiquitous fuel, obtained from a variety of source deposits that present an inherent var-
iation in composition. As newer sources of natural gas become available (such as Liquefied Natural Gas
and shale gas) the compositional variation is expected to increase, which can affect emissions during
combustion in appliances, including criteria pollutants. Unfortunately, experimental observations of
the effect of natural gas composition on combustion products are sparse due to the wide range of burner
designs and high cost of experimentation. The current work develops a rigorous methodology for statis-
tical inference on available data that accounts for the limited nature of experimental observations. The
goal is to overcome data size and quality limitations and provide best estimates of emission response
to fuel composition change by identifying a continuous probability distribution with a high likelihood
of representing the data and high correlation to the experimental observations. Quantitative measures
of agreement between the data and a set of candidate distributions form the basis of the evaluation. In
addition, qualitative assessment of the reliability of distribution identification is derived from a quanti-
tative rating system for desired features of the data set and chosen distribution. Finally, this methodology
is applied to sample data from the Lawrence Berkeley National Laboratory to develop a comprehensive
and self-consistent set of emission factor estimates applicable to investigations of modeling the effect
of natural gas interchangeability on urban air quality. By following the developed process, representative
distributions, ranges of estimates, and evaluations of the estimate reliability are obtained for changes in
CO, NOx, NO2, and HCHO emissions as a function of change in fuel Wobbe Number for six classifications of
residential appliances.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Simulation of air quality impacts in urban airsheds is a widely-
used and valuable tool in understanding the impacts of human
activity on the atmosphere. Modeling studies inform the research
community of likely causes and physical bases of observed atmo-
spheric phenomena and are relied upon by regulatory agencies
for guidance in developing new legislation. Studies developing
baseline emissions profiles to account for modern levels of human
industry, transportation, and other activity have been a crucial sci-
entific tool for regulating agencies to determine emission reduc-
tion goals. Furthermore, modeling builds cases for understanding
why emission reductions need to be implemented. It is also of
interest to understand and anticipate what the effects will be of
scenarios that consider changes to baseline emissions. New indus-
try utilizing well-known equipment, phasing in and out of fuel
sources, and new industry utilizing newly-developed technology
are typical scenarios of interest to regulatory agencies wishing to
understand the potential impacts before they become egregious
and difficult to curtail.
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Investigating the regional impact of emissions changes involves
three major components that must be synthesized to provide a
meaningful and appropriately framed prediction, as shown in
Fig. 1. The first is the definition of the air quality model itself,
including physical models, solution methodology, and baseline
emissions. The second is the development of scenario test cases
to capture the emissions perturbations that reflect the researcher’s
objectives. The final input parameter establishes, via measurement
or estimation, the emissions factors for the known energy conver-
sion devices in the region, especially as they are affected by the de-
fined perturbation. In investigations of fuel interchangeability, the
perturbation is a change in the composition of the fuel.

The current work focuses on the last of these three aspects. In an
ideal case, an investigator has detailed knowledge of all energy con-
version devices in the region, including (averaged or representa-
tive) emission rates for all species of interest. For example, the
sum of all home hot water heaters’ CO emissions within each node
of the simulation domain could be specified. In reality, especially
for devices within the residential sector, estimates must be made
based on assumptions of the type and number of burners. The bases
for the estimates include demographic and land use information as
well as available representative emissions rates. Without knowl-
edge of the exact make, model, and operating condition of each de-
vice in each home, estimates based on demographic information
provide a means to utilize the best data available. However, quan-
tifying emissions factors specific to each burner technology is often
difficult, especially for cases that consider off-design operation.

There is therefore a need to develop a methodology for defining
technology-dependent estimates of emission sensitivity from lim-
ited experimental data. The current work investigates the particular
case of natural gas interchangeability, and estimates the changes in
emission factors as the composition of the regional natural gas sup-
ply is altered. Important to the methodology is an adherence to two
major goals in statistical inference: (1) Identification of a model dis-
tribution for the data with substantial probability of being a proper
representative, and (2) the model and data correlate well. The
method is applied to analyze data for residential burners, which
will be critical to understand within the South Coast Air Basin of
California, where forecasted introduction of new gas sources will al-
ter the composition of residential natural gas [1,2].

Following a brief review of the current state of natural gas inter-
changeability measures in Section 2, Section 3 presents the analysis
methodology. Section 3.1 introduces the source data and demon-
strates the need for a rigorous model distribution selection process.
Section 3.2 presents the model distribution selection process, 3.3
discusses the method of estimating emission factor changes once
a model distribution is chosen, and 3.4 provides an overview of
the reliability rating method. Section 4 presents sample results
Fig. 1. Workflow in simulating regional air quality changes due to local changes in
natural gas supply. Dashed box indicates the portion of the process that is the focus
of the current work.
from the distribution selection process, indicates the selected dis-
tributions for all data sets along with their reliability scores, and
provides in-depth analysis of the cases determined to be non-nor-
mal. Additionally, Section 4 provides the final estimates of emission
factor changes and provides a comparison to sample daily emis-
sions estimates in the South Coast Air Basin of California.
2. Background

As defined by the Gas Interchangeability Task Group, gas inter-
changeability is ‘‘the ability to substitute one gaseous fuel for an-
other in a combustion application without materially changing
operational safety, efficiency, performance or materially increasing
air pollutant emissions’’ [3]. It is particularly important to note that
interchangeability is not based on the fuel properties alone, but
explicitly on the in-operation performance and behavior of the fuel
in installed devices. Thus, interchangeability indices and standards
are also based on testing appliances after manufacturing and
installation. Definitions created in such a manner allow for assur-
ance that the interchangeability limits apply to a wide range of
end-use scenarios and configurations. Historically, the focus of
interchangeability tests has been devoted largely to residential
appliances, due to the fact that residential consumers account for
a large percentage of total US natural gas consumers [4–9].

Changes in the natural gas composition delivered to residential
devices can affect the safe operation, reliability, and ultimate life-
span of their incorporated burners. Altering the chemical makeup
of the fuel can result in off-design operation. Stability issues such
as flashback and blowout may cause reduced reliability or poten-
tially hazardous operation [4–10]. Reshaping of the flame itself
may occur as a result of changes in heat content and fluid proper-
ties. As a result, unexpected impingement with the burner’s solid
walls and quenching of the flame accelerate wear and degradation
and alter emissions levels. Of particular concern are products of
incomplete combustion, such as carbon monoxide, which directly
cause human health concerns and device reliability issues [4–9].
Additionally, the amount of entrained or forced air may be insuffi-
cient and result in higher flame temperatures which lead to soot (a
constituent of total particulate matter) [4–10]. Finally, NOx forma-
tion is governed by complex thermally-controlled reactions and
can thus be affected by fuel composition. NO2 is of particular con-
cern due to its role as a tropospheric ozone-forming photochemical
oxidant and respiratory irritant.

Empirical evaluation of flame and emissions changes is difficult
and often specific to individual burner design. In addition, issues of
reliability often require extensive and long-term testing that can
be logistically challenging and costly [6]. To avoid these difficulties,
qualitative measures are used in the field to indicate proper perfor-
mance. For example, yellow tipping (when the tip of the flame
shifts in visible color from blue to yellow due to a change in tem-
perature) indicates both CO and soot production [4–9]. Although
ubiquitous in the field, this solution has limited utility for research
requiring detailed emissions information.

Thus, a number of researchers have developed methods to ad-
dress properly the subtleties and details of interchangeability
[11–13]. However, the data still have significant limitations. The
most pressing of these shortcomings is data size and breadth, since
there have not been many comprehensive studies to date. Addi-
tionally, the definition of the interchangeability inherently refers
to burner designs and appliance performance in operation accord-
ing to design and tuning specifications. Thus, fundamental and the-
oretical studies cannot be applied directly as strict predictors of
interchangeability. Therefore a need exists to develop methods of
predicting emission changes due to natural gas composition that
are based on limited experimental data sets and to provide
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accurate and transparent measures of the confidence of the rela-
tionships thus developed.

Fortunately, the Wobbe Number (WN) serves as a quantifiable,
theoretically-based indicator of combustion performance [6]. De-
fined as the ratio of fuel higher heating value to the square root
of the fuel specific gravity, the Wobbe Number considers multiple
factors affecting interchangeability but is limited in utility. Wobbe
Numbers only provide context as they relate to each other or to a
predefined baseline value to ensure that sample conditions of tem-
perature and pressure remain constant across tested fuel mixtures.
In practice, the Gas Research Institute has found that Wobbe Num-
ber is a good indicator of matching burner performance if the fuel
composition changes are limited [9,13].

Of particular importance to the current work, the Wobbe Num-
ber also plays an important role when considering Liquefied Natu-
ral Gas (LNG) importation [4]. LNG supplies typically exhibit a
substantially higher concentration of heavier-than-methane
hydrocarbons than conventional natural gas. On the other hand,
LNG contains negligible amounts of CO2, N2 and O2, compared to
domestic gas supplies. Introduction of imported LNG therefore
leads to mixtures with high heating value and consequently a high-
er Wobbe Number. Theoretically, the correlation between Wobbe
Number and the emissions composition is fairly direct. Changes
in hydrocarbon content affect the reaction pathways that lead to
the formation of CO [14], soot, and NOx (and possibly other spe-
cies). Thus, the Wobbe Number is referenced as an acceptable indi-
cator of potential to form species of interest.

Although the information available is limited, there are indica-
tions within the literature of relationships between Wobbe Num-
ber and some species of interest. Testing of emissions has been
completed with residential burners and, more recently, natural
gas engines for transportation purposes. As previously mentioned,
individual studies tend to include a small number of burners.
Depending on individual burner design, studies have found CO in-
creases with [6,9,15–18], decreases with [19], or is relatively
unperturbed by [6,9] increases in fuel Wobbe Number. The rela-
tionship between NOx emissions and Wobbe Number is also sensi-
tive to burner type and design. Studies tend to agree that emissions
either increase [6,9,16,18] with Wobbe Number or remain rela-
tively unaffected [6,9,18]. Interestingly, the effects on NOx emis-
sions in these studies seemed to be largest with burners
designed to have the lowest emissions in rated and as-designed
operation. Recent works have studied toxic species like formalde-
hyde [19,20]; general trends suggest a reduction in formaldehyde
(and other aldehydes) with increasing Wobbe Number.

With emissions performance quantified according to Wobbe
Number, evaluation of expected regional gas supply scenarios is
possible. In its 2007 assessment of the natural gas market, the Cal-
ifornia Energy Commission (CEC) projected a total increase over the
decade 2007–2017 of up to 266% in LNG imports [1]. The CEC’s pro-
jection has begun to come to fruition as no fewer than eight new
facilities for LNG import regasification have been developed or
planned for the West coast of the United States, Canada, and Mexico
as of 2011. Regasification facilities are expected to produce on aver-
age a combined 7 billion cubic feet of natural gas daily [21]. With a
total annual US national consumption of approximately 24 trillion
cubic feet [22], the new facilities alone could provide approxi-
mately one tenth of the total gas consumed. Most likely, the gas
introduced by regasification facilities will perturb regional emis-
sions and the corresponding air quality impact must be quantified.

In recent years, the context for a projected shift in natural gas
composition has evolved to include a number of unconventional
recovery methods (methods other than recovery during oil well
drilling and other long-standing industry practices), particularly
the growth of shale gas extraction. As of 2007, unconventional
gas contributed 46% of the overall natural gas proven reserves
[23]. One estimate places shale gas at greater than a quarter of
the technically recoverable natural gas available within the United
States [23]. Thus, while the context for shifts in natural gas compo-
sition has expanded, the principle of a significant future impact
remains.
3. Methodology

The process of estimating emission factor increases according to
WN and evaluating their reliability is shown in Fig. 2. The process
begins by evaluating the data quality and determining if there ex-
ists sufficient justification for assuming an idealized normal distri-
bution. When this fails, an assumption is made that the data may
vary in accordance with an alternative distribution function, which
must be identified. Identification of an appropriate model distribu-
tion then allows estimation of emission factors based on the fea-
tures of the distribution. Finally, the reliability of the chosen
distribution is evaluated based on a number of features related
to the quality of the original data and the agreement of the data
and distribution. Each step in the process is discussed in detail be-
low and put into the context of the residential appliance data iden-
tified for this study.
3.1. Data inspection

Emissions data analyzed in this work were provided by the
Lawrence Berkeley National Laboratory (LBNL) in a report of exper-
imental determination of residential appliance emissions affected
by natural gas variability [11]. The experiments were performed
on two broad groups of devices-burners utilized in cooking and
preparation of food and burners integrated into space and water
heaters for the home. Within each group were three subgroups
of devices; thus the six device classifications tested were: cook-
tops, oven burners, broiler burners, furnaces, storage water heat-
ers, and tankless water heaters. For each device classification,
emissions data were recorded for the species CO, NO2, NOx, HCHO,
and particulate matter (PM). Experiments utilized a range of differ-
ent fuel compositions, characterized by their WN, which ranged
from 1320 to 1420 in the study.

Results were presented as changes in emissions factors per
change in 25 units of WN. Inherent to this definition is the assump-
tion that the relationship between WN and emissions is linear. Jus-
tification for this assumption was presented in the original LBNL
report. For all species except PM, changes in emissions were pre-
sented in units of ng J�1 (25 WN)�1. PM was reported in particle
number counts per 25 WN. The number of units tested in each
classification was not consistent; some test groups consisted of
10 or more individual units, while others consisted of 5–6 or fewer
units. Replicate tests at each combination of WN and burner unit
were completed; for each set, a p-value for the significance of the
data and an R2 value for the correlation between WN and emission
rate were provided. Upper and lower 95% confidence intervals
(assuming a normal distribution) on the means were provided. In
most cases, bivariate statistical analysis was sufficient; there were
no apparent effects on the emissions factors other than WN. In a
few cases, multivariate analysis was utilized to control for notice-
able dependence on order of testing, warm-up time, and day and/
or time of testing. For multivariate analyses, only p-values were
provided.

The emissions factors of the LBNL report provide a significant
depth of detail in terms of the experimental cases and the difficul-
ties encountered and adjustments implemented. However, for air
quality modeling purposes, it is necessary to condense the experi-
mental observations from individual make, model, and operation
condition to estimates based only on the classification of the



Fig. 2. Process of data analysis for ideal (apparently normal and large) data sets and non-parametric-based method for data sets of limited size and quality. Images in the
figure are representative iconography of fully-detailed results to be presented in later figures of this paper. Their inclusion in this figure is merely illustrative of the flow of the
methodology.
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burner. Sample means and confidence intervals can often be ap-
plied effectively in this regard if the data is known to be of high
quality. When unsure of the quality of the data, critical limits of
the p-value and R2 are enforced to select only statistically signifi-
cant data. For example, critical values of 0.95 for p-value and 0.9
for R2 indicate observations with high confidence. Comparing
means and confidence intervals for all qualifying points may lead
to the development of a reasonable emission factor estimate with
high confidence and reliability.

The LBNL data utilized in this work presents a number of
challenges to such a method. Fig. 3 depicts three sample scenarios
encountered during analysis. In panel (a), there is overlap among
the data and there is a reasonable amount of qualifying data; such
a situation provides an acceptable estimate. In panel (b) overlap
exists in the confidence intervals of observations but there are
few qualifying data; selection based on such a set is difficult to
justify. Panel (c) depicts the case with little to no consistent over-
lap in confidence intervals; a single value selected from this set
cannot be justified well. Finally, some sets exhibited no data (or
only one data point) meeting the requirements of acceptable sig-
nificance and correlation. These problematic scenarios appeared
often with 95% confidence intervals and a 0.9 coefficient of
correlation.

Thus, an alternative method for estimation is required. One
must be careful not to assume a normal distribution at the outset
and set all emission factor values to the average of the data. Indeed,
inspection of the histograms for much of the data indicates that the
distributions are not normal. Thus, non-parametric statistical
inference methods are utilized to develop a series of tests that lead
to the selection of an appropriate distribution to model the data.
The method developed in this work is intended particularly for
determining emission rate factors from small amounts of support-
ing experimental data.

3.2. Distribution selection

The main goal of the distribution selection step is to identify a
continuous probability distribution function with two pertinent
features: (1) the distribution has a reasonable probability of repre-
senting the observed data, and (2) the distribution has a close cor-
relation to the observed data. Once an appropriate distribution is
selected, descriptive features of the distribution are employed to
develop an estimate of each required emission factor. Additionally,
the method is developed so that interpretations of the relative reli-
ability of each distribution (as compared to all other candidates)
and the absolute reliability of a chosen distribution are easily
accessible.

The distribution candidates are chosen to be the normal, lognor-
mal, exponential, gamma, and Weibull distributions. The candidate
distributions are chosen based on their ubiquity in nature and a de-
sire to consider a wide range of possible representatives of the
data. Each distribution has one or two fitting parameters that must
be determined. Best-fit values of distribution parameters were ex-
plored and identified with the aid of Minitab16 software. To assess



Fig. 3. Multiple scenarios depicting data quality in LBNL observations of changes in various species emissions as a function of changes in fuel WN. Black diamonds and lines
indicate ‘‘full-burn;’’ gray squares and lines indicate ‘‘end-of-burn.’’ Bars indicate confidence interval bounds. (a) CO emissions changes in cooktops- an example of sufficient
agreement in observational data. (b) NO2 emissions changes in ovens- an example of an overlapping data set with too few observations. (c) CO emissions changes in ovens- an
example of a data set with no overlap and too few observations.
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the validity of each distribution’s representation of the data sets,
two quantities were calculated: the Anderson–Darling (AD) num-
ber and the p-value against the null hypothesis that the distribu-
tion shape mirrors the observed data.

Based on the fitting parameters for each distribution, the corre-
lation between the distributions and the observed data is devel-
oped. The first step analyzes the observed data histogram to
develop the empirical cumulative distribution function. The identi-
fied shape parameters are then utilized to calculate the cumulative
distribution function for each of the candidate distributions within
the histogram bins. A coefficient of correlation is then calculated
between the empirical cumulative distribution function and each
of the candidate distributions’ cumulative distribution functions,
following the standard definition of R2 as 1 minus the ratio of resid-
ual sum of squares to total sum of squares.

Thus, three indicators are utilized in the selection process of the
representative distribution function: the AD number and p-value cor-
relating observational data and candidate distributions, and the cor-
relation coefficient between the distributions and the empirical
cumulative probability function. It is not guaranteed that all three
measures are optimized by the same distribution, nor is it guaranteed
that a single distribution is clearly the optimal choice. Thus, a selec-
tion process is required to determine the optimal candidate, based on
the desired features and adhering to the main goal of the analysis.

The selection process consists of three rounds to identify the
optimal distribution among all candidates. The assessment does
not provide insight on absolute evaluation of the selection accord-
ing to strict guidelines, as discussed in Section 3.1. However, the
relative comparisons allow flexible investigation of the merits of
each distribution candidate and avoid preemptive elimination
based on a single indicator. Moreover, the method is mechanistic
and robust, so that subtle advantages of a given distribution are
captured quantitatively. The three-round process of determination
proceeds in the following manner and is depicted in Fig. 4:

(0) All distribution candidates are ranked according to AD num-
ber, p-value, and R2.

(1) A selection is made in the first round if a single distribution
candidate exhibits both the highest R2 and either the highest
p-value or lowest AD number.

(2) If no distribution is selected in the first round, a two-step
second round is initiated.
a. Critical indicator values are defined as 95% of the high-
est p-value and R2 and 105% of the lowest AD number.
If a single distribution meets these critical values
according to the rules of step 1, a selection is made.

b. If multiple distribution candidates satisfy the critical
values, indicator values are re-ranked considering only
the subset of qualifying distributions and the subset is
evaluated as in step 1. If a single distribution meets
the requirements of step 1 based on this smaller subset
of candidates, a selection is made.

(3) If no distribution is selected after step 2, either due to a com-
plete lack of qualifying distributions or the presence of mul-
tiple qualifying distributions, a third-round selection is
made based on the distribution with the highest average
value of 1-AD, p-value, and R2.

The objective is to choose the optimal distribution among the
candidates, on a relative basis, based on quantified measures of
agreement with the basis data. Preference is given to a selection
that can be made considering all candidate distributions, as in
the first round. When a first-round selection cannot be made due
to multiple distributions each within partial satisfaction of the
requirements, then an attempt is made to provide a selection based
on the subset of distributions that appear most applicable after the
first attempt. However, when selection is still not possible, the
method resorts to a simple summary rating in order to provide a
final determination. As discussed below, each of these scenarios
is not treated with equal consideration when assessing reliability
of the chosen distribution.

Any selection method should recognize that a choice of distri-
bution other than normal must be supported by thoroughly-docu-
mented evidence and strong confidence in the data and
distribution selection process. Whenever possible, it is desirable
to incorporate features that prefer the normal distribution. Defer-
ence to the normal is achieved in the selection process in the fol-
lowing manners:

(1) All negative data is necessarily removed from consideration
for non-normal distributions. The removal of observations
from consideration has direct adverse effects on the variance
of non-normal data set analyses, their p-values, and their R2

values for fit with the cumulative distribution function.



Fig. 4. Sample distribution selections from data sets satisfying requirements in each round of the selection process. Shaded boxes represent indicator optimal values among
selected distributions and distributions identified as most representative of data. Asterisks (⁄) denote critical indicator values used in reevaluation of Round 2a.
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Removal of negative data also limits the suitability for infer-
ence of the non-normal distributions. Negative data simply
indicate emissions reductions, as opposed to increases,
which may be physically possible. It is only the inability of
the non-normal distributions to represent negative values
that requires their exclusion.

(2) Gamma and Weibull distributions exhibit an upper calcula-
ble limit of 0.25 on the p-value (to be discussed in Sec-
tion 3.4) which adversely affects all considerations of these
distributions’ indicator values.

(3) All non-normal selections are additionally scrutinized for
the margin of their preference to the normal according to
all three indicator values. Ample supporting data must be
demonstrated to validate final selection of the non-normal
distributions.

3.3. Emission factor estimation

The LBNL observational data sets include relatively large uncer-
tainty, are based on a limited number of experiments, and include
both positive and negative values. It is therefore desirable to define
a range of likely emission factor estimates to reflect such high var-
iability. The process described in Section 3.2 provides the estimate
of what can be considered the ‘‘best engineering estimate,’’ based
on the expected, or most probable, value of the selected distribu-
tion. It should be noted that expected value is only equal to the
mean for normally distributed data, and is the motivation for the
distribution selection process. The reliability of the emissions esti-
mate is improved by implementing the proper expected value of
the representative distribution as opposed to blindly applying
the sample data mean.

Upper and lower bounds that bracket the best engineering esti-
mate are also desirable as they can provide context for the magni-
tude of emissions factor changes as well as the quality of the
underlying data. An upper-limit ‘‘maximum likely increase’’ and
lower-limit ‘‘minimum likely increase’’ are defined for the emis-
sions factor of each species, for each device classification. Ideally,
the upper and lower bounds of a confidence interval about the ex-
pected value could be utilized. However, confidence intervals are
only well-defined for the normal distribution and extrapolating
such data from advanced techniques such as bootstrapping for
non-normal distributions with small data sets may be misleading.
It is suggested that the best, consistently-applicable estimates are
the 5% and 95% quantiles of the model distribution, thereby provid-
ing the bounds of 90% of the possible demonstrated emission
factors.

3.4. Evaluation of emission factor reliability

The design of the distribution selection process relies only on
relative comparisons among the candidate distributions. Moreover,
distribution selection in the third and final round is based on
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minimization of non-ideal behavior rather than selection of a dis-
tribution with rigorous indicator values. To provide context of
the independent certainty and reliability of a chosen set of emis-
sion factors, the emission factor estimates are assigned a ‘‘Reliabil-
ity Score.’’ The score consists of two parts: one half of the points are
attributed to desired features of the observed data from the LBNL
measurements and the other half are attributed to the features of
the chosen distribution. A total of 5 points are assigned within each
category:

3.4.1. Sample data reliability points

+1: Total number of applicable data points greater than or equal
to 5.

� Indicates a minimum level of data availability for quality of
interpretation.
+1: Total number of applicable data points greater than or equal
to 10.

� Indicates an improved level of data availability for quality of
interpretation.
+1: p-value less than or equal to 0.1 for at least half of applica-
ble data.

� Indicates a high level of significance in the internal data variation.
+1: R2 greater than or equal to 0.75 for at least half of applicable
data.

� Indicates sufficient correlation of WN and emissions within
observations.
+1: p-value and R2 requirements met for at least one quarter of
applicable data.

� Indicates a sufficient number of observations with internal statisti-
cal significance.

‘‘Applicable data’’ refers to all data utilized with the chosen dis-
tribution. For normal distributions, this includes all the original
data in a set. For all other distributions, negative data is not
included.

3.4.2. Distribution reliability points

+1: Anderson–Darling value of chosen distribution less than or
equal to 0.35.

� Indicates sufficient match of distribution to transformed data set.
+1: p-value of chosen distribution greater than or equal to 0.75.

� Indicates statistical significance of the match between the distribu-
tion and observed data.
+1: R2 value of chosen distribution greater than or equal to 0.8.

� Indicates a quantitative match to the observed data set.
+2: Distribution identified in round 1 as previously described.

OR

+1: Distribution identified in round 2 as previously described.
� Indicates a maximized and sufficient number of desired data qual-

ity features, respectively.
No points awarded for distributions identified in final round.

There are required exceptions for determination of some reli-
ability scores. For any set of multivariate data, no R2 value is pro-
vided by LBNL. It is assumed that the attempt to control for
secondary effects provides an extra measure of confidence in the
results. Thus, for multivariate data, the point for a sufficiently high
R2 value is automatically applied. Additionally, the Weibull and
gamma distributions do not have a closed-form analytical solution
for the p-value above 0.25. Although advanced methods including
computer simulation can be implemented to provide estimates,
the small sample sizes can induce misleading results upon
extrapolation. Thus, for Weibull and gamma distributions, the
point for sufficiently large p-value is automatically applied. When
calculating the distribution’s average of 1-AD, p-value, and R2, a va-
lue of 0.25 is used for a conservative estimate and to give deference
to the normal distribution.

Thus, the reliability score rates distributions on three desired fea-
tures: (1) to provide the most appropriate estimate basis for emission
factors, based on (2) a sufficiently-sized and (3) representative data
set. The point system does account for limitations of the original data
sets; for example, sample sizes of 5 and 10 are very low in the context
of most statistical inference. However, in the context of the limited
data in this particular study, these values represent limits of distribu-
tion sizes too small for various degrees of reliability. Likewise, critical
values of the indicators are developed based on the limited data qual-
ity. For example, sample-based critical p-value is maintained at the
rigorous value of 0.1 while distribution-based critical p-value is re-
laxed from the rigorous 0.9 to 0.75. Once the reliability score is calcu-
lated for each pair of emission species and device classification, a
qualitative descriptor is attached according to Table 1.
4. Results and discussion

The method described in Sections 3.2-3.4 was applied to the
LBNL residential burner data. With the exception of one outlier
point each in cooktop NO2 and HCHO and tankless water heater
CO emissions, the data were analyzed in whole. Additionally,
full-burn and multivariate data sets were considered preferable
to end-of-burn and bivariate data sets, respectively, when both
were supplied. Full-burn data characterize typical residential
application more completely than end-of-burn data and are thus
more readily applicable to synthesis and interpretation. Multivari-
ate analyses provide more reliability and confidence than bivariate
counterparts, increasing their overall quality for analysis. Finally,
due to the limited detail in the particulate matter data and re-
ported experimental and statistical modeling difficulties from
LBNL, PM count data were not analyzed in this work.

Consolidated results of analysis for cooktop burners are pre-
sented in Figs. 6 and 7, with the key for interpretation provided
in Fig. 5. The depicted boxplots indicate the extremes in the sam-
ple-based analysis of the LBNL data. The markers lying along the
axis of each boxplot depict the sample-based mean and confidence
interval and distribution-based expected and extreme quantile val-
ues. The expected value (slim rectangle marker) is interpreted as
the ‘‘best estimate’’ emissions change response, while the upper
quantile (asterisk marker) represents the ‘‘maximum likely in-
crease,’’ and the lower quantile (open circle marker) represents
the ‘‘minimum likely increase.’’ Additionally, labels above and be-
low each boxplot provide the species name, the selected distribu-
tion, and the qualitative and quantitative reliability score. The
boxplots for all other data are not shown*. In the few cases when
one outlier was removed, the distribution analysis is provided only
for the dataset without the outlier, as in the NO2, FULL data in
Fig. 7. Removal of the outlier introduced the observable difference
between the data sample-based mean (open diamond marker) and
the distribution expected value (slim rectangle marker), in spite of
the distribution being normal.

Additionally, two types of confidence intervals are provided
with a subtle distinction between the two. The confidence interval
defined as the ‘‘Sample 95% CI’’ refers to values based on single ob-
served averages. The LBNL data reported average changes in emis-
sions per WN change over multiple experiments with each
individual burner. The ‘‘Sample’’ confidence interval refers to the
95% CI around each of these burner-specific averages. The values



Fig. 5. Key for interpreting boxplots of Figs. 6 and 7. Sample and Ensemble refer to
raw data from the LBNL study. Distribution-based measures are derived from
calculations with the distribution type deemed most representative of the data.

Fig. 6. Boxplots depicting statistical measures of change in emission rate of various
species (S) per change of 25 Wobbe Number in natural gas fuel for cooktops, part 1.
Refer to Fig. 5 for key to interpretation of symbols. E represents the exponential
distribution and W represents the Weibull distribution.

Fig. 7. Boxplots depicting statistical measures of change in emission rate of various
species (S) per change of 25 Wobbe Number in natural gas fuel for cooktops, part 2.
Refer to Fig. 5 for key to interpretation of symbols. N represents the normal
distribution, L represents the lognormal distribution, and W represents the Weibull
distribution.

Table 1
Qualitative interpretation of reliability score ranges.

Reliability Score Descriptor

0–2 Very low
3–4 Low
5–6 Medium
7–8 High

9–10 Very high

Table 2
Distribution selections for all burner types and species. Most common distributions
according to burner type are presented in the final column (bold); similar results
according to species are presented in the final row. When two results are presented,
the result before the slash (/) is the preferred result based on generalizability and
model completeness; the trailing result is less-preferred.

CO NO2 NOx HCHO

Cooktops E/W N/L L/W W L/W
Broilers N N/L N E/⁄ N
Ovens N/L W/N N N N
Furnaces N N N ⁄ N
Storage water heaters N N N ⁄ N
Tankless water heaters N N L N N

N N N/L N/⁄

Key: N – Normal, L – LogNormal, E – Exponential, G – Gamma, W – Weibull, ⁄ – No
Distribution.
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depict the highest upper confidence limit and lowest lower confi-
dence limit among all burner units and are the most extreme val-
ues in the LBNL data sets. By contrast, the ‘‘Ensemble 90% CI’’ is a
confidence interval about the average of all burners. This
confidence interval is more directly comparable than the sample
confidence interval to the 5% and 95% quantiles provided from
the distributions since both measures consider the complete data
set for each burner type. Although there are exceptions, quantile
limits are most often wider than Ensemble limits, but narrower
than sample limits.

It is evident from the data of Figs. 6 and 7 that observed exper-
imental values, sample confidence intervals, and Ensemble means
(not shown) may be positive or negative. Similar behavior is ob-
served in the data derived from the selected distributions. As a re-
sult, finalized estimates of emission changes with respect to WN
are also predicted to be positive or negative. This behavior may
be physically justified. Combustion-related reactions both con-
sume and produce some of the measured species. These reactions
are also highly temperature-dependent. As WN increases, flame
temperature tends to increase due to increased heat content. How-
ever, the burner design can either compound or counteract the
heat content effect due to possible quench zones caused by the
flame contacting the hardware. It is therefore feasible that esti-
mates for the change in emissions respective to WN could include
negative and positive values.

Additionally, the magnitudes of the changes in emissions with
respect to WN vary according to species. For the most part, changes
for CO are the largest (on the order of one to ten ng J�1 per 25 WN),
followed by NO2 and NOx at one to two orders of magnitude smal-
ler, and finally HCHO, one order smaller than the nitrogen species.
Additionally, the mean and expected values between full-burn and
end-of-burn data are often in good agreement; in contrast, the
ranges of reported values vary significantly. Bivariate and multi-
variate mean, expected value, and reported range vary more signif-
icantly from one another as compared to full-burn vs. end-of-burn
data. These observations indicate that there should be separate
consideration made for full- vs. end-of-burn and multi- vs. bivari-
ate data sets. As previously stated, this assessment favors full-burn
and multivariate data.

A summary of the distributions selected as most representative
for all data sets is provided in Table 2. The most common distribu-
tion selected is the normal distribution. For sets where two distri-
butions are provided, the first is the preferred (full-burn or
multivariate) and the second is the less-preferred (end-of-burn or
bivariate). When both versions of a data set provided the same re-
sult, then the result is reported only once. An asterisk indicates a
data set from which a distribution cannot be defined due to too
few data points (or in one case, triplicate data points all at zero).
The final, bold column and row provide the most common distribu-
tion according to burner type and species, respectively. As a whole,
the determinations shown in Table 2 support an assumption of the
normal distribution as typically the best representative of the data.

However, there are six data sets for which the representative
distribution is not normal. As previously mentioned, acceptance



Fig. 8. Histogram and calculated candidate probability distributions (a), and
empirical cumulative probability distributions (b) for cooktops/CO, full. Exponen-
tial, gamma, and Weibull distributions lie on top of one another.

Fig. 9. Histogram and calculated candidate probability distributions (a), and
empirical cumulative probability distributions (b) for cooktops/NOx, full.
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of such a determination must come under strict scrutiny. A more
detailed analysis of the results in these six non-normal cases pro-
vides support for their determination. For the CO/Cooktops data,
the normal distribution is the worst in all three indicator values
by a wide margin. NO2/Oven data is similar, with the only excep-
tion that the R2 for the normal distribution is the second-worst.
NOx/Cooktops data show that the normal distribution is a clear sec-
ond-best distribution, with the normal distribution’s AD 12% high-
er and p-value 26% lower than lognormal. Although the normal
distribution’s R2 is the highest among all distributions, its AD and
p-value deficiencies compared to the lognormal are larger than
the lognormal’s R2 deficiency; the lognormal determination there-
fore seems reasonable. NOx/Tankless Water Heaters has the same
characteristics as CO/Cooktops. The Weibull determination for
HCHO/Cooktops is also a reasonable determination, given that
the normal has the worst AD and p-value in spite of having highest
R2.

HCHO/Broilers is the only distribution that can possibly be ad-
justed to normal. In this case, normal has the best AD, is deficient
by 30% in p-value, and 2% deficient in R2. However, after removal of
negative data, only three data points remain in the set and the ex-
pected values for the normal and exponential distributions are ex-
actly the same. Only the quantile values differ, and only by a small
amount. Exponential and normal distributions in this set are nearly
comparable representatives. Thus, all determinations of non-nor-
mal distribution are supported by detailed evaluation of the
respective data sets.

Half of the non-normal determinations occur in data sets re-
lated to cooktops. This is the most robust data provided by LBNL,
with the largest sample size and the least number of negative data
points. Thus, in cooktop data sets, the non-normal distributions
present only a small disadvantage in the R2 determination due to
loss of data points. The close agreement between raw data and
non-normal distributions in cooktop data is evident in the histo-
grams and probability functions shown in Figs. 8 and 9. Note the
normal distribution is not the selected representative in either
set and a qualitative evaluation reaches the same conclusion*.

Detailed results are not shown in this work, but the distribution
selection process was also completed with the adjustment of bas-
ing R2 for non-normal distributions on histograms and empirical
cumulative distribution functions derived from only the positive
data in each set. Importantly, this adjustment removes one of the
previously-discussed biases towards the normal distribution. Thus,
the results of such an analysis must be considered carefully and
may not be as reliable as the results already presented. When the
distributions are analyzed in this manner, the determinations are
as shown in Table 3. It is immediately noticeable that the normal
distribution becomes much less common and the variability in
the identified distributions is much greater compared to the previ-
ous method. Additionally most of the non-normal distributions
from Table 2 are replicated in this method. This suggests the pos-
sibility that increased volumes of data will result in more determi-
nations of non-normal distributions. However, given the caveat
already discussed and the fact that the determinations in Table 3
are based on exceptionally small data sets, such a determination
cannot be made with certainty from the observed data utilized in
this work.

The final determination of the three desired emission factor in-
creases is based on the distributions shown in Table 2. There are
only two exceptions, both of which are related to the HCHO data.
As shown in the table, HCHO/Furnaces and HCHO/storage water
heaters are not represented by any distribution. For the furnaces
case, only three data points were provided, and their values evenly
spaced. Thus, the median is chosen as the best engineering esti-
mate while the maximum and minimum values are utilized as
the maximum and minimum likely increase. For the storage water
heater data, there were again only three data points provided.
However, they were all zero. Thus, all estimates are simply set to
zero for this case as well. All emission factor increase estimates
are provided in Table 4, where many of the previously-discussed
results are quantitatively presented.

The data in Table 4 demonstrate that estimated changes in
emissions are not constant across either species or burner types.
For example, considering only the best engineering estimate, the
emissions of CO across all burner types spans multiple orders of



Table 3
Distribution selections for all burner types and species according to the adjusted R2

method. Most common distributions according to burner type are presented in the
final column (bold); similar results according to species are presented in the final row.
When two results are presented, the result before the slash (/) is the preferred result
based on generalizability and model completeness; the trailing result is less-
preferred.

CO NO2 NOx HCHO

Cooktops E N/E L E E
Broilers ⁄G/N ⁄G ⁄G E/⁄ G/⁄

Ovens N/L G/W N L/⁄ N/L
Furnaces N/L N/⁄ N ⁄ N/L
Storage water heaters L/⁄ G/⁄ L ⁄ L
Tankless water heaters L/⁄ E L N L

L/⁄ G/⁄ L/N E/⁄

Key: N – Normal, L – LogNormal, E – Exponential, G – Gamma, W – Weibull, and ⁄ –
No Distribution.
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magnitude and includes both positive and negative values. Like-
wise, differences in orders of magnitude across species do not al-
low for a single estimate to be used for each burner type. Thus,
although it would be convenient to provide a single estimate for
a given species across all burners, this work finds that such a sim-
plification is not supported by the data. Numerous differences in
burner design and operation provide sufficient physical differences
to confidently state that emissions change with respect to WN is
dependent on burner design. Moreover, for the same burner, the
emissions change with respect to WN is not independent of the
measured species.

To the authors’ knowledge, this is the first attempt in the liter-
ature to employ a mechanistic statistics-based methodology to
estimate natural gas burner emission sensitivity to fuel Wobbe
Number. A number of new insights relevant to the air quality mod-
eling community are possible due to this analysis. In absolute
terms, emissions of CO are the most affected by changes in the fuel
Wobbe Number, as compared to the other emitted species. In con-
trast, formaldehyde (HCHO) is hardly affected at all by changes to
Table 4
Estimated increases in emissions of CO, NO2, NOx, and HCHO for all residential burners un

Best engineering estimate

CO
Cooktops 11.08
Broilers 6.17
Ovens 12.55
Furnaces �0.75
Storage water heaters 0.19
Tankless water heaters 3.94

NO2

Cooktops 0.37
Broilers 0.12
Ovens 0.41
Furnaces �0.05
Storage water heaters 0.00
Tankless water heaters 0.23

NOx

Cooktops 0.39
Broilers 0.33
Ovens �0.18
Furnaces 0.60
Storage water heaters 0.12
Tankless water heaters 1.74

HCHO
Cooktops 0.04
Broilers 0.04
Ovens 0.00
Furnaces �0.04
Storage water heaters 0.00
Tankless water heaters �0.05
the input fuel for residential burners. Total NOx and the more-spe-
cific NO2 are species of critical importance for many air quality
investigations, and the analysis performed in this work finds that
they are moderately affected by changes in the fuel Wobbe Num-
ber for residential burners. With the emissions factors prescribed
by this work, simulations of fuel change effects within regional air-
sheds likely will exhibit noticeable changes in air quality due to the
adjusted NO2 and NOx emissions rates. Regarding the various bur-
ner types, the only consistent observation to be made is that stor-
age water heaters’ emissions are relatively unaffected (especially
in comparison to the other burner types) by fuel changes for all
species considered in this work. The remaining burner types seem
to be more varied in the relative magnitude of their response to
fuel changes according to the type of emitted species.

Results presented in Table 4 must be considered in light of their
associated reliability estimates. A sample of the breakdown of reli-
ability scores, for all cooktop data, is provided in Table 5, in which
columns represent the various point requirements as described in
Section 3.4. Table 6 provides a summary of all emission factor reli-
ability estimates, consolidated from the individual boxplots. The
range of reliabilities varies widely. Note that the HCHO data has
the lowest scores in reliability on average, and is also the data that
has the smallest magnitude. Additionally, the sample-based reli-
ability for HCHO is rather low; this seems to indicate the observed
data itself, with such small orders of magnitude, may have had
some difficulty with resolution and sensitivity, leading to the low
reliability and difficulty in finding an appropriate distribution.

The ranges of values for a given emission factor, relative to the
best engineering estimate, do not correlate to the reliability score.
For most emissions factors, the range of values is between 1 and 10
times the best estimate. The largest ratio does not always occur at
the lowest reliability scores, though. For example, both CO/Ovens
and HCHO/Cooktops have relative ranges near 2. However, their
reliability ratings are 8 and 1, respectively. Moreover, the reliability
is not correlated to the type of distribution selected. Comparison of
Table 2 and Table 6 reveals that the data sets identified as normal
der various estimation assumptions (ng/J per 25 WN).

Maximum likely increase Minimum likely increase

33.20 0.57
17.05 �4.72
26.02 �0.93
1.63 �3.13
0.99 �0.61
19.07 �11.19

0.93 0.04
0.80 �0.57
0.99 0.06
0.18 �0.28
0.26 �0.25
0.64 �0.18

0.82 0.14
1.54 �0.87
0.50 �0.87
1.53 �0.33
0.63 �0.40
5.25 0.24

0.08 0.01
0.13 0.00
0.06 �0.07
�0.02 �0.06

0.00 0.00
0.05 �0.15



Table 5
Cooktop reliability score point allocation. Columns 1–5 represent sample-based reliability features. Columns 6–10 represent distribution-based reliability features.

Sample-based reliability features Distribution-based reliability features

n P 5 n P 10 p 6 0.1 R2 P 0.75 p&R2 AD 6 0.35 p P 0.75 R2 P 0.8 Round 1 Round 2

CO, full 1 1 1 1 1 1 1 1 0 0
CO, end 1 1 1 1 1 1 1 1 2 -
NO2 full, no outlier 1 1 0 0 0 0 0 1 0 1
NO2 end, no outlier 1 1 0 0 0 0 0 0 0 0
HCHO, no outlier 1 0 0 0 0 0 0 0 0 0
NOx, full 1 1 0 0 0 0 0 1 0 1
NOx, end 1 1 1 0 1 1 1 1 0 1

Table 6
Qualitative emission factor reliability scores for all species and residential burner
types. H+ represents very high, H represents high, M represents medium, L represents
low, and L� represents very low. Data before and after a slash (/) indicate the values
for the preferred and less-preferred data set for the species and burner. An asterisk (⁄)
indicates insufficient data.

CO NO2 NOx HCHO

Cooktops H/H+ L/L� L/H L�

Broilers H/M H L M
Ovens H H+/H H+ L
Furnaces H+/M L� H L
Storage water heaters L H+ L� ⁄

Tankless water heaters L M H M
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acquired reliability ratings at nearly every possible value. Data sets
identified as non-normal exhibit similar behavior (though the lim-
ited amount of such data limits the interpretation).

The sample size of a data set is also not a good indicator of the
reliability when considered alone. Since the reliability score is de-
fined with a large number of desirable features of the observed
data sets and the selected distribution to represent the set, such
observations are not entirely surprising. The reliability score devel-
oped is thus determined to be a fairly robust indicator of the con-
fidence that a researcher may have in implementing the identified
emission factors.

It is important to consider the calculated projected increases in
emissions relative to WN as they compare to typical emission rates
within the area of interest. The minimum and maximum best engi-
neering estimates for each emission species are utilized in this
work as points of comparison. Typical emission rates and natural
gas consumption rates within the South Coast Air Basin of Califor-
nia are estimated as in previous work [24]. For the comparison, the
heating value of natural gas is assumed to be 1000 BTU per stan-
dard cubic foot and the WN is assumed to be 1335 BTU per stan-
dard cubic foot, per the prior work.

Table 7 provides the results of comparing the calculated in-
creases in emissions rates to typical daily emissions in the South
Coast Air Basin of California. The minimum values of the expected
daily increase are often one or two orders of magnitude below the
estimated daily emission, calculated on a heat content and WN
specific basis. However, the largest daily emissions factors within
each set approach parity with the daily emission value or one order
of magnitude below. Thus, it is expected that the emissions
changes estimates provided in this work will, for some burner
Table 7
Comparison of typical daily emission rates and projected increases for the South Coast Ai

Typical emission (tons/day) Energy-specific emissions (ng/J) Energy-and-WN

CO 2358.42 827.95 15.50
NO2 21.69 7.62 1.43
NOx 216.92 76.15 0.14
HCHO 15.70 5.51 0.10
types and species, provide a significant increase to the emissions
predicted for a given WN scenario (given the experimental limits,
WN can increase by 85 units with the predicted values; thus, just
over three times the presented rates may be implemented in ex-
treme cases). However, some increases are likely negligible and
at the time of implementation of the simulation may likely be ig-
nored. This determination will be most appropriately considered
by the researcher performing the simulation.
5. Conclusions

This work has developed a statistically-based method of esti-
mating emission factor changes with respect to fuel WN for resi-
dential burners. The method was developed on the basis of
assuming that the data sets available to a researcher interested
in these metrics are too small to perform rigorous statistical infer-
ence. Thus, conservative estimates of the distribution shape that
may give rise to the observed data are investigated, and provide
an accurate estimate of the best engineering guess and possible ex-
treme values of the emissions change rates. Additionally, the meth-
od provides context to the estimates that are developed by
providing a way to assess their reliability, based on desirable fea-
tures of both the observed data set and the selected distribution.
The method is generalized and can therefore be utilized by
researchers attempting to develop these types of estimates for
any set of burner types, emissions species, and fuel WN that are
important to a given area, provided the researcher has access to
proper, representative data.

In addition, this work applied the method developed to data
provided by an LBNL study regarding emissions changes based
on WN for residential burners. The analysis found that for most
combinations of burner type and emissions species, the normal
distribution should be considered the most-representative distri-
bution for the data. However, for cases when the normal distribu-
tion was not found to be a good representative, it was clear that
this distribution should not be considered superior to the distribu-
tion identified by the mechanistic method described. Additionally,
extreme values of predicted emissions changes are obtained not
from confidence intervals around the mean, but from 5% and 95%
quantiles, as the latter can be calculated readily from any distribu-
tion, but not the confidence interval about the mean. Furthermore,
it was determined that the reliability measure developed as part of
the distribution selection method was robust, due to its inclusion
of multiple desirable features of the observed data and selected
r Basin in Southern California.

-specific emissions (ng/J/25 WN) Emissions factor increase range (ng/J/25 WN)

[�0.75, 12.545]
[�0.05, 0.413]
[�0.183, 1.738]
[�0.050, 0.043]
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distribution in its calculation. Considerations of single parameters
as indicators did not match well to the calculated reliability.

The emission change estimates predicted by this work may be
utilized in future investigations of regional air quality impacts
due to natural gas interchangeability. Alternatively, the analysis
method described could be applied to other data sets that may
be more complete or offer desirable features lacking in the exam-
ple data set. Both of these options can provide informative bases
for future regional air quality impact investigations.
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