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Supplementary material

1. Aviation Emissions Inventory Code (AEIC)
1.1 Methods

AEIC uses an OAG database to compute the flight schedules. It then computes the time in
mode of each phase of the LTO and the emission index for each specie, power setting and engine
type. Both results are multiplied to compute the emissions per specie, LTO phase, flight and airport.
Then, a temporal allocator resolves the emissions using the flight schedule. At the same time, a
spatial allocator resolves the emissions using each individual flight's path, computed from the location
of the departure and arrival airport. The methodology for each items is described in detail in Stettler et
al. (2011), Simone et al. (2013) and in the user manual (Simone et al., 2013b).

1.2 Results

The total emissions for each airport included in the study and for each case is shown in table
2. Table 2 provides a by pollutant detail of total emission for each of the studied scenarios. Table 3 of
the main manuscript shows the percentage differences of each scenario emissions compared to the
base case using the data from Table 2. Additionally, fig. 1 provides a vertical distribution of fuel burn.

Table 1. Average daily emissions for the simulated periods for each airport and pollutant (tons/day)

Scenario Fuel burn NOX HC SOX PM2.5
Base case 1063.39 12.71 2.34 1.24 0.24

TOT 1011.01 1253 2.02 118 0.24
GSE 1054.77 1216 228 124 0.21
BIO 1063.39 114 231 0.04 0.06
ALL 1002.39 10.67 1.94 0.04 0.03
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Fig. 1. Vertical distribution of fuel burn in the AEIC domain.

1.3 Results comparison

The results have been compared with two other sets of results from different modes.
Additionally, Stetler 2011 provided an estimate of uncertainty of emissions calculated from AEIC with
respect to operational variability (e.g., TIM, thrust setting) and measurements of Els. These are
discussed further below, and provide a quantification of the uncertainties of our emission inventory.

1.3.1 AEIC comparison to ARB’s 2012 detailed inventory

To develop the inventory presented below, ARB collected aircraft activity data from airports,
FAA’s databases, and SCAG. Then, the FAA’s Emissions and Dispersion Modeling System (EDMS)
model for airports was used with detailed aircraft activity data for commercial air carrier operations or
the EPA’s average emission factors for airports with total aircraft operations data (by major aircraft
type) and other aircraft operations with no details on aircraft or engine types.

Table 2. AEIC estimates comparison with ARB’s 2012 detailed inventory by airport and pollutant.

Airport NOXx HC SOx PM2.5 Operations
| ARB's 2012 emission inventory, from 2016 draft for SCAQMD (tons/year)

LAX 3,634 510 377 67 605,480
SNA 333 47 35 7 88,290
ONT 345 38 32 6 68,338
BUR 165 23 18 5 65,656
LGB 100 9 11 3 34,574
| AEIC estimates (tons/year)

LAX 3,474 693 329 65 603,922
SNA 391 46 42 7 102,964
ONT 275 33 30 6 81,840
BUR 188 28 23 4 63,913
LGB 99 7 11 2 26,750
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Difference (%) (corrected with operations / year)

LAX 4 36 12 2

0
SNA 1 -17 1 -2 0
ONT -33 -27 -22 -20 0
BUR 17 27 30 -8 0
LGB 28 4 21 0 0

1.3.2 AEIC comparison to AEDT 2006 data

AEDT 2006 data for US Landing and Take-Off (LTO) aviation emissions is provided in
appendix H of Ashok, A. (2011) and data is provided by airport.

Table 3. AEIC estimates comparison with AEDT 2006 data provided in appendix H of Ashok, A.
(2011) by airport and pollutant.

Airport Fuel burn NOXx HC SOx PM2.5 Operations
| AEDT (2006 data) (tons/year) |
LAX 287,332 3,601 500 328 76 599,178
SNA 40,303 447 96 46 13 136,652
ONT 36,231 443 77 41 11 106,369
BUR 23,388 249 44 27 7 93,459

| AEIC estimates (tons/year)

LAX 282,400 3,474 693 329 65 603,922
SNA 36,181 391 46 42 8 102,964
ONT 25,885 275 33 30 6 81,840
BUR 19,354 188 28 23 5 63,913

| Difference (%) (corrected with operations / year)

LAX 2 4 38 0 15 0
SNA 19 16 -36 21 -18 0
ONT -7 -19 -44 -5 -29 0
BUR 21 10 -7 25 4 0

Fuel burn and emissions are scaled with the provided number of operations. Fuel burn, NOx
and SOx in LAX (the SoCAB airport with 70% of the traffic) differences between the AEDT data are -
2%, -4%, and 0% respectively. However, HC and PM2.5 differences are 38% and -15% respectively.
The PM.s methodology differs between AEDT and the AEIC: the former used FOA3 and smoke
number while the latter uses FOX. Stettler et al. (2011) recognizes that AEIC has uncertainty in their
emissions estimation methodology and provided ranges for the emissions estimates: [-23 to +29] for
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NOx, [-59 to +155] for HC, [-29 to +32] for SOx and [-36 to +45] for PM2s. Note that HC values can be
between -59 +155% as EI(HC) (derived from EI(HCHQ)) is very uncertain and is represented by a
uniform distribution with bounds at 90%.

2. Aviation air quality impact weight in SoCAB
2.1 Emissions comparison

Table 4. Aviation emissions relative weight to total emissions in the SoCAB according to 2012
Estimated Annual Average Emissions in the SoCAB (tons/day) (ARB, 2016)

TOG NOX SOX PM2.5
‘Grand total 13331 5143 168 651
Aviation 3.28 13.64 1.46 0.53
Aviation relative weight 0.25% 2.65% 8.69% 0.81%

2.2 Pollutant concentration comparison

Table 5. Aviation attributable pollutant ground concentration differences relative weight to SoCAB
average concentrations. The base and delta concentrations are calculated in this study as part of the
the air quality impacts study of implementing airport emission reduction strategies.

Os (ppb) PMas (ug/m3)
Winter Sumer Winter Sumer
Base 47.3 37.2 4 4.6
Domain Delta 0.00244 -0.0064 -0.00066 -0.00186
averaged
concentration Relative weight 0.01% -0.02% -0.02% -0.04%
Base 52.7 78.3 25.1 23.8
Domain Delta 1.32 2.3 -1.19 -1.42
maximum
concentration Relative weight 2.50% 2.94% -4.74% -5.97%

3. Base case concentrations

Fig. 2 shows the spatial distribution of base case ground-level of 8-hour average O3
concentration and 24-hour PM;s concentration in 2012 from CMAQ (base case). Table 6 shows the
base case maximum and average ground-level 8-hour average O3 concentration and 24-hour PMzs
concentration in 2012 from CMAQ.
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Fig. 2. (top) Base case spatial distribution of the one week summer Ieft) and winter (right)
average daily 8-hour maximum average of Os. (bottom) Base case spatial distribution of the one week
summer (left) and winter (right) average daily 24-hour average of PMzs.

Table 6. Base case ground-level O; and PM.s concentrations

8h O3 [ppb]  24h PMys [ug/m®]

max avg max avg

Winter 527 47.3 25.1 4.0
Summer 78.3 37.2 23.8 4.6

4. Simulation episode comparison with ground level seasonal SoCAB
measured pollutant

The simulation periods selected are characteristic of each period with sufficient accuracy to
satisfy the goals of this study and use the results to identify the relative “delta” in impacts. A daily
comparison of Oz and PMzs measured ground level concentrations across the SoCAB for the year
2012 is shown in Fig 3 and summarized in table 7. Ground-level measured concentration differences
between the simulated episodes mean and seasons mean are -14% and -2% in winter and summer
respectively. Future studies should perform longer simulations to improve accuracy.

Table 7. Measured concentrations averages (ppb). Data from the EPA’s Air Quality System (AQS)
database. Retrieved from: epa.gov/outdoor-air-quality-data/download-daily-data (February 2018)
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Winter Summer

Simulated episode mean 28.5 59.1
Season mean 33.3 60
Difference -14 -2
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Fig. 3. Daily O3 (a) and PM_s (b) ground level measured concentrations at the reporting stations. The
scattered data (x) is the domain average of all stations inside the SoCAB for each day. The days on

which the simulation was performed are highlighted in colors. Data from the EPA’s Air Quality System
(AQS) database (AQS, 2018).

5. Alternative fuel implementation scenario of a 100% FT1 blend
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Following the methodology described in section 2 of the main paper emission indexes have
been extracted from the AAFEX report for the FT1 100% blend. For clarity, in this section the BIO-
50% tag refers to the BIO scenario discusses in the main paper (50/50 blend of FT1 and JP-8 fuels)
while the BIO-100% tag refers to the implementation of a pure blend of FT1 fuel. Results show a
proportional behavior, in Summer and a more non-linear behavior in Winter. Looking at the total
aviation attributable population exposure to criteria pollutants, the BIO-50% scenario raises Os in
Winter a 25% less than half the increase of the BIO-100% scenario. Also, the BIO-50% decreases
PM.s by 10% more than half the decrease of the BIO-100% scenario. Despite the present technical
difficulties of deploying 100% alternative fuels, the FAA has shown its clear intention of achieving so.
The results presented below represent a more feasible reality than the BIO scenario.
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Fig. 4. Percentage change in total aviation attributable population exposure to O3 (left) and PM.s
(right), computed from the difference in population-weighted average of each case minus no
aviation case versus the base case minus no aviation case.

6. Health impact assessment
6.1 Methods

The environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP-
CE), is a health impact assessment tool maintained by the U.S. EPA (Davidson et al., 2007) used to
quantify and assess the monetary impacts of predicted air quality changes. For this work, BenMAP-
CE is used to quantify the health impacts of ground concentration differences in O3 and PMas
between the ALL case minus the base case, in order to provide an upper bound for potential impacts
of airport emission control strategies. Impacts are reported for short-term exposure to both pollutants
as appropriate for the modeled episode. The methods used closely follow those in the South Coast Air
Quality Management District's (SCAQMD) Socioeconomic Report for the 2016 Air Quality
Management Plan (AQMP) (Shen et al.,, 2017). The gridded population density is obtained from
Landscan data (ORNL, 2016). Baseline incidence rates for mortality and morbidity are selected at the
county level by five-year age group based on recommendations from a comprehensive review of the
literature (Marrison et al., 2016). The premature mortality functions for O3 and PM.s derived in Bell,
Dominici, and Samet (2005) and Atkinson et al. (2014) were used respectively. The C-R functions are
selected based on suggested criteria from a thorough review of the literature and prioritized for the
SoCAB four-county region (IEc, 2016a; IEc, 2016b). An overview of utilized C-R functions can be
found in Table 3B-1 in Appendix B of Shen et al. (2017). Valuation functions for both morbidity and
mortality incidence are selected from a literature review with recommendations for the SoCAB
(Geggel et al., 2016; Roman et al., 2016).
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6.2 Results

Table 1 shows the estimated reductions in incidence of premature mortality and morbidity from
improvements in ozone and PM_s for the ALL scenario minus the base case for a summer and winter
day. The health impacts correspond to a mean valuation of $550,880 per day in Summer and
$344,580 per day in Winter. Avoided premature deaths associated with PM,s are minor which is
expected for short-term exposure. Impacts are higher for the summer modeling period indicating a
greater value in reducing short-term exposure to PMs relative to winter for impacted populations in
the SoCAB. Ozone values are shown as negative (i.e., a cost) due to the modeled increases in
ground-level concentrations. Results show that PMzs benefits are 4.7 and 2.9 times the O3 costs for
the summer and winter episodes respectively. Therefore, the overall air quality impact of the scenario

results in a net benefit.

Table 8. Valuation of reduced short-term exposure to ozone and PM.sin the All Case estimated in
BenMAP. Valuation estimates in thousand $ / day, 95% confidence intervals in parenthesis.

Endpoint

Valuation Estimates
thousand $/day (95% confidence interval)

Summer

Winter

Premature Deaths Avoided, All Cause

Short-Term Ozone Exposure
Short-Term PM2.5 Exposure
Mortality Total

-145.94 (-324. 70, -15.03)
671.28 (338.73, 1062.93)
525.34 (14.03, 1047.90)

-176.28 (-392.21, -18.16)
503.41 (254.03, 797.13)
327.14 (-138.18, 778.97)

Reduced Morbidity Incidence

Short-Term Ozone Exposure
Short-Term PM2.5 Exposure
Morbidity Total

Scenario Total

-3.48 (-6.95, -0.03)
29.02 (20.08, 41.79)
25.54 (13.13, 41.75)

550.88 (27.16, 1089.65)

-4.42 (-8.83, -0.02)

21.86 (15.12, 31.35)

17.44 (6.29, 31.33)
344.58 (-131.89, 810.30)

Reduced morbidity incidence is shown in table 2 for all endpoints including myocardial
infarction, asthma, respiratory symptoms, and others. Conversely, incidence of premature death and
morbidity increase for the short-term ozone exposure as a result of the increased concentrations
modeled in the summer and winter episodes.

Table 9. Breakdown by endpoint of the reduced morbidity incidences. Valuation estimates in
thousand $ / day. *Pooled from HA, Chronic Lung Disease (less Asthma) (18-64) and HA, All
Respiratory (65 or older) ** Days when normal activities are altered due to ailments

Endpoint (Reduced Morbidity Incidence only)

Valuation Estimates

Summer Winter
Short-Term Ozone Exposure
Emergency Room Visits, Asthma -0.08 -0.11
Hospital Admissions (HA), All Respiratory -0.34 -0.39
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Hospital Admissions (HA), Asthma -0.03 -0.03

Minor Restricted Activity Days** -0.87 -1.05
School Loss Days, All Cause 217 -2.83
Short-Term PM> 5 Exposure

Acute Myocardial Infarction, Nonfatal 16.12 12.19
Asthma Exacerbation (Wheeze, Cough, Shortness of 0.10 0.08
Breath)

HA, All Cardiovascular (less Myocardial Infarctions) 1.49 1.12
HA, All Respiratory (less Asthma)* 1.26 0.96
HA, Ischemic Stroke 2.04 1.55
HA and ED Visits, Asthma 0.05 0.04
Lower Respiratory Symptoms 0.06 0.04
Upper Respiratory Symptoms 0.11 0.08
Minor Restricted Activity Days** 2.79 2.08
Work Loss Days 4.99 3.72
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